
Fast generalized DFTs for all finite groups

Chris Umans∗

Caltech

March 18, 2024

Abstract

For any finite group G, we give an algebraic algorithm to compute the generalized
Discrete Fourier Transform (DFT) with respect to G, using O(|G|ω/2+ε) operations, for
any ε > 0. Here, ω is the exponent of matrix multiplication.

1 Introduction

For a finite group G, let Irr(G) denote a complete set of irreducible representations of
G. A generalized DFT with respect to G is a map which sends a group algebra element
α ∈ C[G] (which is a vector of |G| complex numbers), to the following linear combination
of irreducible representations: ∑

g∈G
αg

⊕
ρ∈Irr(G)

ρ(g).

This is a fundamental linear operation that maps the standard basis for the group algebra
C[G] to the Fourier basis of irreducible representations of group G. It has applications in
data analysis [Roc97], machine learning [Kon08], optimization [Kon10], as a component in
other algorithms (including fast operations on polynomials and in the Cohn–Umans matrix
multiplication algorithms [CU03, CKSU05], and as the basis for quantum algorithms for
problems entailing a Hidden Subgroup Problem [MR97b].

This paper gives algorithms that compute generalized DFTs with respect to any finite
group G, and any chosen bases for the irreducible representations ρ. We typically speak
of the complexity of computing a generalized DFT map in the (non-uniform) arithmetic
circuit model and do not concern ourselves with finding the irreducible representations
(although efficient algorithms are known [BR90]). The trivial algorithm thus requires
O(|G|2) operations, since one can simply sum up |G| block-diagonal matrices, each with
at most |G| non-zero entries in the blocks (since

∑
ρ∈Irr(G) dim(ρ)2 = |G|).

Fast algorithms for the DFT with respect to cyclic groups are well-known and are
attributed to Cooley and Tukey in 1965 [CT65], although the ideas likely date to Gauss.
Beth in 1984 [Bet84], together with Clausen [Cla89], initiated the study of generalized
DFTs, the “generalized” terminology signalling that the underlying group may be any
group. A central goal since that time has been to obtain fast algorithms for generalized
DFTs with respect to arbitary underlying groups. One may hope for “nearly-linear”

∗Supported by NSF grant CCF-1815607 and a Simons Foundation Investigator grant.

1

time algorithms, meaning that they use a number of operations that is upper-bounded by
cε|G|1+ε for universal constants cε and arbitary ε > 0. Such “exponent one” algorithms are
known for certain families of groups: abelian groups, supersolvable groups [Bau91], and
symmetric and alternating groups [Cla89]. Algorithms for generalized DFTs manipulate
matrices, so it is not surprising that they often require a number of operations that
depends on ω, the exponent of matrix multiplication. Thus we view algorithms that
achieve exponent one conditioned on ω = 2 as being “nearly as good” as unconditional
exponent one algorithms. Such algorithms are known for solvable groups [Bet84, CB93],
and with the recent breakthrough of [HU18a], for groups of Lie type; these algorithms
achieve exponent ω/2.

In this paper we realize the main goal of the area, obtaining exponent ω/2 for all finite
groups G. The previous best exponent that applies to all finite groups was obtained by
[HU18a]; it depends in a somewhat complicated way on ω, but it is at best

√
2 (when

ω = 2); our exponent beats the one obtained by [HU18a] for every ω between 2 and 3.
Before [HU18a], the best known exponent was 1 +ω/4 (which is at best 3/2 when ω = 2),
dating back to the original work of Beth and Clausen.

1.1 Past and related work

A good description of past work in this area can be found in Section 13.5 of [BCS97]. The
first algorithm generalizing beyond the abelian case is due to Beth in 1984 [Bet84]; this
algorithm is described in Section 3.1 in a form often credited jointly to Beth and Clausen.
Three other milestones are the O(|G| log |G|) algorithm for supersolvable groups due to
Baum [Bau91], the O(|G| log3 |G|) algorithm for the symmetric group due to Clausen
[Cla89] (see also [Mas98] for an improvement), and the O(|G|ω/2+ε) algorithms for groups
of Lie type obtained by Hsu and Umans, which is described in Section 3.2. Wreath
products were studied by Rockmore [Roc95] who obtained exponent one algorithms in
certain cases.

In the 1990s, Maslen, Rockmore, and coauthors developed the so-called “separation of
variables” approach [MR97a, MRW16b], which relies on non-trivial decompositions along
chains of subgroups via Bratteli diagrams and detailed knowledge of the representation
theory of the underlying groups. There is a rather large body of literature on this approach
and it has been applied to a wide variety of group algebras and more general algebraic
objects. For a fuller description of this approach and the results obtained, the reader is
referred to the surveys [MR97b, Roc02], and the most recent paper in this line of work
[MRW16a].

2 Preliminaries

Throughout this paper we will use the phrase

“generalized DFTs with respect to G can be computed using O(|G|α+ε) operations, ∀ε > 0”

where G is a finite group and α ≥ 1 is a real number. We mean by this that there are
universal constants cε independent of the group G under consideration so that for each
ε > 0, the operation count is at most cε|G|α+ε. Such an algorithm will be referred to as
an “exponent α” algorithm. This comports with the precise definition of the exponent
of matrix multiplication, ω: that there are universal constants bε for which n× n matrix

2

multiplication can be performed using at most bεn
ω+ε operations, for each ε > 0. Indeed

we will often report our algorithms’ operation counts in terms of ω. In such cases matrix
multiplication is always used as a black box, so, for example, an operation count of
O(|G|ω/2) should be interpreted to mean: if one uses a fast matrix multiplication algorithm
with exponent α (which may range from 2 to 3), then the operation count is O(|G|α/2).
In particular, in real implementations, one might well use standard matrix multiplication
and plug in 3 for ω in the operation count bound.

We use Irr(G) to denote the complete set of irreducible representations of G being
used for the DFT at hand. In the presentation to follow, we assume the underlying field is
C; however our algorithms work over any field Fpk whose characteristic p does not divide
the order of the group, and for which k is sufficiently large for Fpk to represent a complete
set of irreducibles.

We use In to denote the n× n identity matrix. The following is an important general
observation (see, e.g., Lemma 4.3.1 in [HJ91]):

Proposition 2.1. If A is an n1×n2 matrix, B is an n2×n3 matrix, and C is an n3×n4

matrix, then the entries of the product matrix ABC are exactly the entries of the vector
obtained by multiplying A ⊗ CT (which is an n1n4 × n2n3 matrix) by B viewed as an
n2n3-vector, which is denoted vec(B).

2.1 Basic representation theory

A representation of group G is a homomorphism ρ from G into the group of invertible d×d
matrices. A representation ρ naturally specifies an action of G on Cd; the representation
ρ is thus said to have dimension dim(ρ) = d. A representation is irreducible if the action
on Cd has no G-invariant subspace. Two representations of the same dimension d, ρ1 and
ρ2, are equivalent (written ρ1

∼= ρ2) if they are the same up to a change of basis; i.e.,
ρ1(g) = Tρ2(g)T−1 for some invertible d× d matrix T . The classical Maschke’s Theorem
implies that every representation ρ0 of G breaks up into the direct sum of irreducible
representations; i.e. there is an invertible matrix T and a multiset S ⊆ Irr(G), for which

Tρ0(g)T−1 =
⊕
ρ∈S

ρ(g).

Given a subgroup H ⊆ G one can obtain from any representation ρ ∈ Irr(G) a repre-
sentation ResGH(ρ) (the restriction of ρ to H), which is a representation of H, simply by
restricting the domain of ρ to H. One can also obtain from any representation σ ∈ Irr(H),
a representation of G called the induced representation IndGH(ρ), which has dimension
dim(σ)|G|/|H|. We will not need to work directly with induced representations, but we
will use a fundamental fact called Frobenius reciprocity. Given ρ ∈ Irr(G) and σ ∈ Irr(H),
Frobenius reciprocity states that the number of times σ appears in the restriction ResGH(ρ)
equals the number of times ρ appears in the induced representation IndGH(σ).

A basic fact is that
∑

ρ∈Irr(G) dim(ρ)2 = |G|, which implies that for all ρ ∈ Irr(G), we

have dim(ρ) ≤ |G|1/2. This can be used to prove the following inequality, which we use
repeatedly:

Proposition 2.2. For any real number α ≥ 2, we have∑
ρ∈Irr(G)

dim(ρ)α ≤ |G|α/2.

3

Proof. Set ρmax to be an irrep of largest dimension. We have∑
ρ∈Irr(G)

dim(ρ)α ≤ dim(ρmax)α−2
∑

ρ∈Irr(G)

dim(ρ)2 = dim(ρmax)α−2|G| ≤ |G|α/2,

where the last inequality used the fact that dim(ρmax) ≤ |G|1/2.

2.2 Basic Clifford theory

Clifford theory describes the way the irreducible representations of a group H break up
when restricted to a normal subgroup N , which is a particularly well-structured and well-
understood scenario. The account in this section covers elementary facts that can be
found in, e.g., the text by Huppert [Hup98].

Elements of H act on the set Irr(N) as follows:

(h · λ)(n) = λ(hnh−1),

for λ ∈ Irr(N).
Let O1, . . . ,O` be the orbits of this H-action on Irr(N). Clifford theory states for each

σ ∈ Irr(H), there is a positive integer eσ and an index iσ for which the restriction ResHN (σ)
is equivalent to

eσ
⊕
λ∈Oiσ

λ,

where, as is standard notation, e · λ denotes λ repeated e times as a direct summand. In
particular, this implies that all λ ∈ Irr(N) that occur in the restriction have the same
dimension, dσ, and multiplicity, eσ, and that dim(σ) = dσeσ|Oiσ |.

We can also define the following subsets, which partition Irr(H):

Irr`(H) = {σ ∈ Irr(H) : the irreps in O` occur in σ} = {σ ∈ Irr(H) : iσ = `}.

We will need the following proposition:

Proposition 2.3. For a finite group H and normal subgroup N , and sets Irr`(H) as
defined above, the following holds for each `:∑

σ∈Irr`(H)

dim(σ)eσ/dσ = |H/N |.

Proof. Fix λ ∈ O`, and note that the induced representation IndHN (λ) has dimension
dim(λ)|H/N |. Let mσ,λ be the number of times σ ∈ Irr(H) occurs in IndHN (λ). Then we
have ∑

σ∈Irr(H)

dim(σ)mσ,λ = dim(λ)|H/N |.

By Frobenius reciprocity, mσ,λ equals the number times λ occurs in ResHN (σ). Thus the
summand dim(σ)mσ,λ equals dim(σ)eσ, whenever mσ,λ 6= 0 (and zero otherwise). The
proposition follows.

4

2.3 Generalized DFTs and inverse generalized DFTs

We assume by default that we are computing generalized DFTs with respect to an arbitary
chosen basis for each ρ ∈ Irr(G). Sometimes we need to refer to the special basis in the
following definition:

Definition 2.4. Let H be a subgroup of G. An H-adapted basis is a basis for each
ρ ∈ Irr(G), so that the restriction of ρ to H respects the direct sum decomposition of ρ
into irreps of H. Moreover, different occurences of a given irrep of H should be equal
under this restriction.

In concrete terms, this implies that for each ρ ∈ Irr(G), while for general g ∈ G, ρ(g)
is a dim(ρ) × dim(ρ) matrix, for g ∈ H, ρ(g) is a block-diagonal matrix with block sizes
coming from the set {dim(σ) : σ ∈ Irr(H)}. An H-adapted basis always exists (see, e.g.
Theorem 13.45 in [BCS97]).

A general trick that we will rely on is that if one can compute generalized DFTs with
respect to G for an input α supported on a subset S ⊆ G (i.e., αg = 0 for g 6∈ S), then
with an additional multiplicative factor of roughly |G|/|S|, one can compute generalized
DFTs with respect to G.

Theorem 2.5. Fix a finite group G and a subset S ⊆ G, and suppose a generalized DFT
with respect to G can be computed in m operations, for inputs α supported on S. Then
generalized DFTs with respect to G can be computed using

O(m+ |G|ω/2+ε) · |G| log |G|
|S|

operations, for any ε > 0.

Proof. First observe that by multiplying by ⊕ρ∈Irr(G)ρ(g) we can compute a generalized
DFT supported on Sg = {sg : s ∈ S}, for an additive extra cost of∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

operations, for all ε > 0, and by applying Proposition 2.2 with α = ω + ε this is at most
O(|G|ω/2+ε). A probablistic argument shows that O(|G| log |G|/|S|) different translates g
suffice to cover G, so we need only repeat the DFT supported on Sg translated by each
such g, and sum the resulting DFTs. More precisely, the probability that a fixed element
x ∈ G is un-covered by Sg (where g is chosen uniformly at random from G) is 1−|S|/|G|.
Then after |G| ln |G|/|S| independent trials the probability that x is un-covered is(

1− |S|
|G|

) |G|
|S| ln |G|

≤ 1

|G|
,

and we are done with an application of the union bound.

The inverse generalized DFT maps a collection of matrices Mσ ∈ Cdim(σ)×dim(σ), one
for each σ ∈ Irr(G), to the vector α for which∑

g∈G
αg

⊕
σ∈Irr(G)

ρ(g) =
⊕

σ∈Irr(G)

Mσ.

In the arithmetic circuit model, the inverse DFT can be computed efficiently if the DFT
can:

5

Theorem 2.6 (Baum, Clausen; Cor. 13.40 in [BCS97]). Fix a generalized DFT with
respect to finite group G and suppose it can be computed in m operations. Then the
inverse DFT with respect to G (and the same basis), can be computed in at most m+ |G|
operations.

2.4 Main technical ideas

Here we highlight three key technical ideas that go into the main result.

Structure in an H-DFT when H has a normal subgroup. In general, an
H-DFT ∑

h∈H
αh

⊕
σ∈Irr(H)

σ(h)

is a block-diagonal matrix with
∑

σ∈Irr(H) dim(σ)2 = |H| non-zero entries, or “degrees
of freedom”. If H has a subgroup N with coset representatives X, the H-DFT can be
equivalently written

∑
n∈N

∑
x∈X

αxn
⊕

σ∈Irr(H)

σ(x)

︸ ︷︷ ︸
Mn

 ·
⊕

σ∈Irr(H)

σ(n).

We show in Theorem 3.5 that if N is normal, then matrix Mn can be taken to have
special structure well beyond the block-diagonal structure of an H-DFT: various entries
can be made to repeat in a prescribed pattern, in the same way for all n. Then, just as
we describe a block-diagonal matrix as having a number of “degrees of freedom” equal
to the number of entries in the blocks, we can describe the Mn as having a number of
“degrees of freedom” equal to the number of free entries, and in the structure we uncover
in this paper, this number is the information-theoretic optimal, |H|/|N |. This structure is
accessible in the sense that it can be efficiently obtained from an H-DFT, by performing a
number of inverse N -DFTs, and it is the key to overcoming the bottleneck in the previous
best result [HU18a].

Efficient matrix multiplication for certain block-structured matrices. In
order to make use of the above structured matrices in our recursive algorithm, we need to
be able to multiply them with a vector efficiently. The following situation arises: we have
a matrix with several “big” blocks along the diagonal, with each big block itself being a
block-diagonal matrix. The big blocks have the same number of entries but incompatible
structure, and the entries in each big block are repeated in each other big block, in a
pattern we can choose. For example, two of the big blocks might look like the block-
diagonal matrices in the top row of Figure 2. It is straightforward to multiply such a
matrix with a vector in time proportional to the number of free entries times the number
of big blocks. We devise a way to multiply such a matrix with a vector in time proportional
to only the number of free entries, paying only an extra, multiplicative, logarithmic factor
(see Section 3.3.1 and Lemma 3.9). This idea makes use of fast matrix multiplication.

6

Triple subgroup structure in every finite group. One of the challenges in
designing an algorithm computing generalized DFTs with respect to an arbitrary finite
group G is that the algorithm can only exploit structure that can be found in every finite
group. Beyond the Sylow Theorems, there is very little to work with. Past work made
use of Lev’s Theorem, which states that every finite group (other than a cyclic group)
has a moderately large subgroup, and [HU18a] made use of the Classification Theorem to
prove that every finite group (other than a p-group) has two proper subgroups H and K
whose product HK nearly covers the entire group. However H ∩K may be quite large,
which limits the usefulness of this decomposition. Our main structural result on groups
(Theorem 3.10) strengthens the decomposition of [HU18a] to prove that every finite group
has a normal subgroup N (possibly trivial) for which G/N is either cyclic of prime order,
or has proper subgroups H,K with H ∩K = {1} and whose product HK nearly covers
the entire quotient group. In other words, after quotient-ing by a normal subgroup, every
group is either cyclic of prime order, or “almost” a so-called Zappa–Szép product. This
structural result seems natural and potentially useful beyond the application in this paper.

3 General strategy: reduction to subgroups

One way to organize the main algorithmic ideas in the quest for a fast DFT for all finite
groups is according to the subgroup structure they exploit. The algorithms themselves are
recursive, with the main content of the algorithm being the reduction to smaller instances:
DFTs over subgroups of the original group. When aiming for generalized DFTs for all
finite groups, such a reduction is paired with a group-theoretic structural result, which
guarantees the existence of certain subgroups that are used by the reduction.

In the exposition below, it is helpful to assume that ω = 2 and seek an “exponent 1”
algorithm under this assumption (in general, the exponent achieved will be a function of
ω, and in our main result this function is ω/2). By the term overhead we mean the extra
multiplicative factor in the operation count of the reduction, beyond the nearly-linear
operation count that would be necessary for an exponent 1 algorithm.

3.1 The single subgroup reduction

The seminal Beth–Clausen algorithm reduces computing a DFT over a group G to com-
puting several DFTs over a subgroup H of G. We call this the “single subgroup reduction”.
Roughly speaking, the overhead in this reduction is proportional to the index of H in G.
The companion structural result is Lev’s Theorem [Lev92], which shows that every finite
group G (except cyclic of prime order which can be handled separately) has a subgroup of
order at least

√
|G| (and this is tight, hence the overhead is

√
|G| in the worst case). As

noted in the introduction, this reduction together with Lev’s Theorem implies exponent
3/2 (assuming ω = 2) for all finite groups.

Here is a more detailed description, together with results we will need later. Let H
be a subgroup of G and let X be a set of distinct coset representatives. We first compute
several H-DFTs, one for each x ∈ X:

sx =
∑
h∈H

αhx
⊕

σ∈Irr(H)

σ(h)

7

and by using an H-adapted basis (Definition 2.4), we can lift each sx to

sx =
∑
h∈H

αhx
⊕

ρ∈Irr(G)

ρ(h)

by just copying entries (which is free of cost in the arithmetic model). Then to complete
the DFT we need to compute ∑

x∈X
sx

⊕
ρ∈Irr(G)

ρ(x).

The ρ(x) factors in the equation are often called “twiddle factors” when G is abelian.
Generically, this final computation requires an overhead proportional to |X| = [G : H],
even when just considering the outermost summation. See Corollary 4 in [HU20] for the
details to complete this sketch, yielding the following:

Theorem 3.1 (single subgroup reduction). Let G be a finite group and let H be a sub-
group. Then we can compute a generalized DFT with respect to G at a cost of [G : H]
many H-DFTs plus O([G : H]|G|ω/2+ε) operations, for all ε > 0.

In the special case that H is normal in G and G/H is cyclic of prime order, the
overhead of [G : H] can be avoided, by using knowledge about the way representations
σ ∈ Irr(H) extend to ρ ∈ Irr(G). This insight is the basis for the Beth–Clausen algorithm
for solvable groups. We need it here to handle the case of G/H cyclic of prime order,
which is the single exceptional case not handled by our main reduction. The following
theorem can be inferred from the proof of Theorem 7.7 in Clausen and Baum’s monograph
[CB93]:

Theorem 3.2 (Clausen, Baum [CB93]). Let H be a normal subgroup of G with prime
index p. We can compute a generalized DFT with respect to G and an H-adapted basis,
at a cost of p many H-DFTs plus

O(p log p) ·
∑

σ∈Irr(H)

dim(σ)ω+ε

operations, for all ε > 0.

For our purposes the following slightly coarser bound suffices, which accomodates an
arbitary basis change (hence obviating the need for an H-adapted basis):

Corollary 3.3. Let H be a normal subgroup of G with prime index p. Generalized DFTs
with respect to G can be computed at a cost of p many H-DFTs plus O(|G|ω/2+ε) opera-
tions, for all ε > 0.

Proof. Applying Proposition 2.2 to Theorem 3.2 with α = ω+ ε yields an operation count
of O(p log p)|H|(ω+ε)/2, which is at most O(|G|ω/2+ε). Performing an arbitary basis change
costs ∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

operations which is again at most O(|G|ω/2+ε) by Proposition 2.2.

8

3.2 The double subgroup reduction

Recently, Hsu and Umans proposed a “double subgroup reduction” [HU18a] which reduces
computing a DFT over a group G to computing several DFTs over two subgroups, H and
K. This reduction is especially effective for groups of Lie type (see [HU18a]). Roughly
speaking, the overhead in this reduction is proportional to |G|/|HK| and |H ∩K|. The
companion structural result shows that every finite group G (except p-groups which can be
handled separately) has two proper subgroups H and K for which |G|/|HK| is negligible.
However, |H ∩ K| might still be large, which is the one thing standing in the way of
deriving an “exponent ω/2” algorithm from this reduction.

To illustrate the bottleneck in this reduction, we describe it in more detail. Let H,K
be subgroups of G and assume |G|/|HK| is negligible. We first compute an intermediate
representation ∑

g=hk∈HK
αg

⊕
σ∈Irr(H)
τ∈Irr(K)

σ(h)⊗ τ(k)

in two steps (and then lift it to a G-DFT). Here the sum is over g ∈ HK, with the
factorization g = hk determined by the choice of K ′ described below. The first of the two
steps is to compute at most [G : H] many H-DFTs, yielding, for each k ∈ K ′ ⊆ K (where
K ′ is the largest subset of distinct coset representatives of H in G that is contained within
K):

sk =
∑
h∈H

αhk
⊕

σ∈Irr(H)

σ(h).

The second step is as follows: for each entry of the block-diagonal matrix sk, we use this
entry (as k varies) as the data for a K-DFT. There are

∑
σ∈Irr(H) dim(σ)2 = |H| such

entries in general. Thus the second step entails |H| many K-DFTs, and this represents
the key bottleneck. Note that when |G|/|HK| is negligible, |H||K| is approximately
|G||H ∩K|, and this explains the overhead of roughly |H ∩K| which prevents obtaining
an “exponent ω/2” algorithm from this reduction. For completeness we record the main
theorem of [HU20] here:

Theorem 3.4 (Theorem 12 in [HU20]). Let G be a finite group and let H,K be subgroups.
Then we can compute generalized DFTs with respect to G at the cost of |H| many K-DFTs,
|K| many H-DFTs, plus

O(|G|ω/2+ε + (|H||K|)ω/2+ε)

operations, all repeated O(|G| log |G|
|HK|) times, for all ε > 0.

Our main innovation, described in the next section, is a way to overcome the bot-
tleneck: when H ∩ K = N is a normal subgroup of G, we are able to rewrite each sk
as a sum of |N | matrices with special structure: effectively, there are only |H/N | many
non-zero “entries” for which we need to compute a K-DFT, and as we will show, this
exactly removes the overhead factor.

3.3 The triple subgroup reduction

In this section we give our main new result. We devise a “triple subgroup reduction”
which reduces computing a DFT over G to computing several DFTs over two subgroups,
H and K, and several inverse DFTs over the intersection N = H ∩K, when N is normal
in G. Roughly speaking, the overhead is proportional to |G|/|HK|. The companion

9

structural result (Theorem 4.1) shows that for every finite group G, if N is a maximal
normal subgroup in G then (except for the case where |G/N | is cyclic of prime order, which
can be handled separately) there exist two proper subgroups H and K with H ∩K = N ,
such that |G|/|HK| is negligible. This is the key to the claimed exponent ω/2 algorithm.

Let H be a group with normal subgroup N . The main technical theorem shows how
to rewrite the output of an H-DFT as the sum of |N | matrices each of which only has
“|H/N | degrees of freedom”. In the following theorem we adopt the notation introduced in
Section 2.2; as a reminder: dσ is the dimension of the N -irreps occurring in the restriction
ResHN (σ), eσ is the multiplicity, and O` are the orbits of the H-action on Irr(N), which
are used to define the sets Irr`(H) which partition Irr(H).

Theorem 3.5. Let H be a group and N a normal subgroup. For every

M =
⊕

σ∈Irr(H)

Mσ ∈
⊕

σ∈Irr(H)

Cdim(σ)×dim(σ),

the following holds with respect to an N -adapted basis: there exist matrices Mσ
n ∈ Cdim(σ)/dσ×eσ

for which ∑
n∈N

(Mσ
n ⊗ Jσ) · σ(n) = Mσ,

where Jσ is the dσ × dim(σ)/eσ matrix (Idσ |Idσ | · · · |Idσ). Moreover, given injective func-
tions f` from {(σ, i, j) : σ ∈ Irr`(H), i ∈ [dim(σ)/dσ], j ∈ [eσ]} to [r], the Mσ

n can be taken
to satisfy

f`(σ, i, j) = f`′(σ
′, i′, j′) ⇒ ∀n Mσ

n [i, j] = Mσ′
n [i′, j′],

and these matrices Mσ
n can be obtained from M by computing r inverse N -DFTs.

∑
n∈N

Mσ1
n [5, 2] · Jσ1

Mσ2
n [1, 1] · Jσ2

·
σ1(n)

σ2(n)

λ1(n)

λ2(n)

λ3(n)

λ4(n)

λ5(n)

=

Mσ1

Mσ2

Figure 1: Illustration of the proof of Theorem 3.5. In this example Irr(H) = {σ1, σ2}, Irr(N) =
{λ1, λ2, λ3, λ4, λ5}; the orbits are O1 = {λ1, λ2, λ3} and O2 = {λ4, λ5}; Irr1(H) = {σ1} and
Irr2(H) = {σ2}; and the multiplicities are eσ1 = 2 and eσ2 = 1. In the figure, we highlight
the parts of the matrices that give rise to the system of equations solved with a single inverse
N -DFT, corresponding to the value a = f1(σ1, 5, 2) = f2(σ2, 1, 1). This inverse N -DFT with
the highlighted blocks of Mσ1 and Mσ2 as input data yields the scalars Mσ1

n [5, 2] = Mσ2
n [1, 1]

that satisfy the simultaneous equations.

One should think of the functions f` as labeling the entries of the Mσ
n matrices for

the σ in a given Irr`(H). This labeling is then used to ensure that entries of Mσ
n with

σ ∈ Irr`(H) and the entries of Mσ′
n with σ′ ∈ Irr`′(H) are equal, if they have the same

10

labels. In Section 3.3.1 we will show how to choose this labeling so that the final “lifting”
step of our algorithm can be efficiently computed. For now, we note that Proposition 2.3
implies that there exist labellings f` with r = |H/N |, and indeed this is the minimum
such r since f` must be injective. Our actual choice of f` in Section 3.3.1 will have
r = O(|H/N | log |H/N |), which is not much larger.

we remark that this is not much larger than the absolute minimum, for by Proposition
3, in order for the labelings to be injective, it is necessary and sufficient to have r ≥ |H/N |

Proof. Fix σ ∈ Irr(H), and recall that there is a unique Irr`(H) containing σ. Since we
are using an N -adapted basis, σ(n) (for n ∈ N) has the form

Ieσ ⊗
⊕
λ∈O`

λ(n),

and thus ∑
n∈N

(Mσ
n ⊗ Jσ) · σ(n) =

∑
n∈N

Mσ
n ⊗ (λ1(n)|λ2(n)| · · · |λ|O`|(n)) (1)

where λ1, . . . , λ|O`| is an enumeration of O`. Since these are pairwise inequivalent irreps,
the span of

{(λ1(n)|λ2(n)| · · · |λ|O`|(n)) : n ∈ N}

is the full matrix space Cdσ×dim(σ)/eσ . Hence we can choose the Mσ
n so that expression

(1) equals an arbitrary Mσ ∈ Cdim(σ)×dim(σ).
In particular, for each σ, the (i, j) entries of the Mσ

n should satisfy

∑
n∈N

Mσ
n [i, j]

λ1(n)
λ2(n)
...
λv(n)

 =

Mσ[i, jv]
Mσ[i, jv + 1]
...
Mσ[i, jv + v − 1]

 (2)

where v = |O`| and Mσ occuring on the right-hand side is blocked into dσ×dσ submatrices
and Mσ[i, j′] denotes the (i, j′) block. Thus the values of a given entry of Mσ

n as n ranges
over N , can be found in an inverse N -DFT with the appropriate blocks of Mσ as input
data.

Observe however that in general, O` is a proper subset of Irr(N), and hence the afore-
mentioned inverse N -DFT is underdetermined; for example Equation (2) remains satisfied
if we require

∑
n∈N M

σ
n [i, j]λ(n) = 0 for all λ ∈ Irr(H) \ O`.

Indeed, we can simultaneously solve Equation (2) with respect to several σ ∈ Irr(H)
via a single inverse N -DFT, provided the associated orbits Oiσ are different. To prove
the “moreover” part of the theorem statement, then, we set up the following system of
equations, for a given a ∈ [r]: for each ` for which f`(σ, i, j) = a we simultaneously require
that Equation (2) holds with respect to σ, i, j (and note these are determined by a since f`
is injective). Since the Irr`(H) partition Irr(H), selecting at most one σ from each Irr`(H)
results in a system that mentions each λ ∈ Irr(N) at most once. Hence a single inverse
N -DFT solves this system of equations. See Figure 1. We do this once for each a ∈ [r],
to produce the matrices Mσ

n from the original M , using r inverse N -DFTs.

11

3.3.1 Choosing the labelings f`

To make use of Theorem 3.5, we need to define injective functions f` from

{(σ, i, j) : σ ∈ Irr`(H), i ∈ [dim(σ)/dσ], j ∈ [eσ]}

to [r]. We identify the domain of f` with the entries of a block-diagonal matrix, with
rectangular blocks of size dim(σ)/dσ × eσ, as σ ranges over Irr`(H). Recall that by
Proposition 2.3, the total number of entries in these blocks is |H/N |.

1

2

3

4 5

·

x1

x2

x3

x′4
x′′4

=
y1

y2

y3

y4 (= y′4 + y′′4)

6 7

8

9

·
u1

u2

u3

= v1

v2

v3

1
6

2

7

8

3
9

4

5

·

x1

x2
u1

u2

x3

x′4

u3

x′′4

=

y1
y2 v1

v2

y3 y′4 v3

y′′4

Figure 2: Example illustrating how the f` functions are defined and used. The numbered
columns of the block-diagonal matrix in the upper-left are associated to the columns of the
target block-diagonal matrix on the bottom-left in the manner described in Section 3.3.1. The
numbered columns of the block-diagonal matrix in the upper-right are also associated by the
same procedure, and the figure shows these two associations superimposed on each other. We
see that the two matrix-vector multiplications at the top can be combined into the single matrix
product on the bottom, provided that similarly labeled entries of the two source matrices are
guaranteed to contain identical values. Unlabeled cells of the middle-bottom matrix contain
zeros. Note that in the bottom-right matrix each segment of the original vectors y and v may be
padded up to twice its original length (but not more), and it may be repeated up to twice and
summed (as y′4 and y′′4 are) if the columns of the associated block are mapped to two different
blocks in the target matrix. More than two repetitions are not possible because the source
blocks all have at most as many columns as rows.

We will describe functions f` associating the entries of a block-diagonal matrix of this
format (which depends on `) with a target block-diagonal matrix whose format is fixed as

12

follows:
2 · |H/N | blocks of size 1× 1
d2 · |H/N |/4e blocks of size 2× 2
d2 · |H/N |/16e blocks of size 4× 4

...⌈
2 · |H/N |/22i

⌉
blocks of size 2i × 2i

...⌈
2 · |H/N |/22imax

⌉
blocks of size 2imax × 2imax

where imax = dlog4 |H/N |e. Note that the number of entries of this target matrix is
O(|H/N | log |H/N |), and this will be our r. The asssociation specifying the map f` is
quite simple: we take one column at a time of the source block-diagonal matrix, and if
it has height w, we associate it, top-aligned, with the next-available column among the
blocks of size 2i × 2i, for the i such that 2i/2 < w ≤ 2i. See Figure 2. Since there can
be at most |H/N |/w < 2|H/N |/2i columns of height w in the source matrix (which has
|H/N | entries in total), and the target block-diagonal matrix has at least 2 · |H/N |/2i
columns of height 2i, this association is possible.

We will use these mappings when applying Theorem 3.5 to facilitate an efficient “lift”
from an intermediate representation to the finalG-DFT. The key benefit of the mappings is
that they allow us to combine several matrix-vector products with incompatible formats
into one, as illustrated in Figure 2. In order to be able to speak precisely about this
combined object, we make the following definition:

Definition 3.6 (parent matrix). Given a partition of Irr(H) into sets Irr`(H), matrices
Aσ with dimensions dim(σ)/dσ×eσ (one for each σ ∈ Irr(H)), and functions f` as above,
satisfying

f`(σ, i, j) = f`′(σ
′, i′, j′) ⇒ Aσ[i, j] = Aσ

′
[i′, j′],

define the parent matrix of the Aσ to be the matrix with the format of the target ma-
trix above, and with entry (x, y) equal to the value of Aσ[i, j] if there exists ` for which
f`(σ, i, j) = (x, y), and zero otherwise.

See Figure 3 for an example parent matrix.

Lemma 3.7. Let P be the parent matrix of the Aσ as specified in Definition 3.6, with
(square) block sizes ai × ai. If x and y are vectors for which Aσx = y, then there are
block-diagonal matrices X and Y with block sizes ai×wi for which PX = Y . The entries
of X can be computed from x and the entries of y can be computed from the entries of
Y , each in O(

∑
i aiwi) operations. Finally, we have that

∑
i aiwi is at most 4 times the

number of entries in y.

Proof. We consider the process of placing columns of Aσ into an ai × ai block of P .
Each column k of Aσ has an associated entry of x (xk) and an associated block of y
(corresponding to the rows covered by the block of Aσ). When placing column k of
Aσ, we place xk in the k-th row of X. If the column is from the same block of Aσ as
the previous one, we put xk in the same column of X as the the previous entry (xk−1);
otherwise we start a fresh column. For Y , as we encounter each new block of Aσ, we place
the associated block of y into a fresh column of Y (occupying the rows associated with
the current ai × ai block of P). Refer to Figure 2.

A key observation is that the blocks of Aσ are no wider than they are high. This
means that their columns can spill over at most 2 blocks in P . As a consequence, each

13

a

b
c

d
e

f
g

h

i
j

k

l
m

Aσ

a

b
c

d

e

f
g

n

p

q

r

h

i

j

k

l
m

parent of {Aσ′ , Aσ}

a

b
c

d

e

f
g

n
p

q

r

h

i

Aσ
′

Figure 3: An example parent matrix. Unlabeled entries are zero. Empty blocks in the parent
matrix are not pictured.

block of y above can be repeated in at most 2 blocks of Y . Moreover, each column of a
block of Aσ is placed in a block of P of height at most double. These two facts imply that
the total size of the blocks of Y ,

∑
i aiwi, is at most 4 times the number of entries in y.

Clearly X can be easily produced from x, and to recover y from Y we need to only
sum up pairs where a given block of y was placed twice.

The benefit of this Lemma is that we have replaced Aσ with a matrix P that does
not depend on σ. As a result, we can bundle together many Aσxσ matrix-vector products
into a single matrix multiplication P · (X̃σ|X̃σ′ | · · ·).

3.3.2 Computing the intermediate representation

We are at the point now where we can compute the intermediate representation, which
we then lift to the final G-DFT in Lemma 3.9, making critical use of the just-described
labellings f`. The setup is as follows: H and K are proper subgroups of group G, and
H ∩K = N is normal in G. Let X be a system of distinct coset representatives of N in
H and let Y be a system of distinct coset representatives of N in K. Thus H = XN and
K = NY . Note that HK = XNY with uniqueness of expression.

When applying the triple subgroup reduction in our final result, it will happen that

|G|
|HK|

=
|G||N |
|H||K|

is negligible, and notice that in this case, if H-DFTs, K-DFTs, and N -DFTS have nearly-
linear algorithms, then indeed the cost of applying the next lemma is nearly-linear in |G|
as desired.

Lemma 3.8. Let H,K be subgroups of G with N = H ∩K normal in G, and let Y be a
system of distinct coset representatives of N in K. Let α ∈ C[G] be supported on HK,
and let

{Mσ
n,y : σ ∈ Irr(H), n ∈ N, y ∈ Y }

14

be a set of matrices satisfying∑
n∈N

(Mσ
n,y ⊗ Jσ)σ(n) =

∑
h∈H

αhyσ(h) (3)

with respect to N -adapted bases for Irr(H), where Jσ is the dim(σ)/eσ × dσ matrix
(Idσ |Idσ | · · · |Idσ) as in Theorem 3.5. For each n ∈ N, y ∈ Y let Pn,y be the parent matrix
of the matrices {Mσ

n,y : σ ∈ Irr(H)}. Then the following expression∑
n∈N

∑
y∈Y

⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T (4)

can be computed with |Y | many H-DFTs, O(|H/N | log |H/N |)·|Y | many inverse N -DFTs,
and O(|H/N | log |H/N |) many K-DFTs.

Expression (4) arises in Equation (10) in the next section after manipulating the ex-
pression for a G-DFT supported on HK = HY , and it is the “input” to Lemma 3.9 which
efficiently lifts it to a G-DFT.

Proof. First, compute for each y ∈ Y and σ ∈ Irr(H) the matrices

Mσ
y =

∑
h∈H

αhyσ(h),

using |Y | different H-DFTs. Next, apply Theorem 3.5, once for each y, to the matrices⊕
σ∈Irr(H)

Mσ
y ∈

⊕
σ∈Irr(H)

Cdim(σ)×dim(σ),

together with the labelings f` from Section 3.3.1, to obtain matrices Mσ
n,y ∈ Cdim(σ)/dσ×eσ

for which ∑
n∈N

(Mσ
n,y ⊗ Jσ)σ(n) = Mσ

y ,

at a cost of O(|H/N | log |H/N |) · |Y | many inverse N -DFTs. Note that these Mσ
n,y satisfy

Equation (3). Let Pn,y be the parent matrix of the matrices {Mσ
n,y : σ ∈ Irr(H)}.

For each (i, j), the vector β with β[ny] = Pn,y[i, j] is an element of C[K] and we
perfom a K-DFT on it; this entails computing at most O(|H/N | log |H/N |) different K-
DFTs because this is the number of entries in the blocks of the block-diagonal matrices
Pn,y. At this point we hold, in the aggregate, all of the entries of Expression (4) in the
statement of the lemma, and the proof is complete.

3.3.3 Lifting to a G-DFT

In this section we show how to efficiently lift the intermediate representation, Expression
4 computed via Lemma 3.8, to a G-DFT. We continue with the notation of the previous
section.

Let Irr∗(H) denote the multiset of irreps of H that occur in the restrictions of the
irreps of G to H (with the correct multiplicities), and similarly let Irr∗(K) denote the

15

multiset of irreps of K that occur in the restrictions of the irreps of G to K. Let S and T
be the change of basis matrices that satisfy:

S

 ⊕
σ∈Irr∗(H)

σ(h)

S−1 =
⊕

ρ∈Irr(G)

ρ(h) ∀h ∈ H

T

 ⊕
τ∈Irr∗(K)

τ(k)

T−1 =
⊕

ρ∈Irr(G)

ρ(k) ∀k ∈ K.

We further specify that S should be with respect to an N -adapted basis for Irr(H).
Notice that for n ∈ N = H ∩K, we have:

S

 ⊕
σ∈Irr∗(H)

σ(n)

S−1 = T

 ⊕
τ∈Irr∗(K)

τ(n)

T−1,

or equivalently ⊕
σ∈Irr∗(H)

σ(n)

S−1T = S−1T

 ⊕
τ∈Irr∗(K)

τ(n)

 , (5)

a fact we will use shortly.
A G-DFT with input α supported on HY = HK is the expression:

∑
h∈H
y∈Y

αhy
⊕

ρ∈Irr(G)

ρ(hy) =
∑
y∈Y

∑
h∈H

αhy
⊕

ρ∈Irr(G)

ρ(h)

 ·
 ⊕
ρ∈Irr(G)

ρ(y)

=
∑
y∈Y

S

∑
h∈H

αhy
⊕

σ∈Irr∗(H)

σ(h)

S−1T

 ⊕
τ∈Irr∗(K)

τ(y)

T−1

Now for each y ∈ Y , the left-most parenthesized expression is an H-DFT, with certain
blocks repeated. Set R = S−1T . By Equation (3) in the statement of Lemma 3.8, each
such expression can be rewritten in terms of matrices Mσ

n,y, yielding:

∑
h∈H
y∈Y

αhy
⊕

ρ∈Irr(G)

ρ(hy) =
∑
y∈Y
n∈N

S

 ⊕
σ∈Irr∗(H)

(Mσ
n,y ⊗ Jσ)σ(n)

R

 ⊕
τ∈Irr∗(K)

τ(y)

T−1

=
∑
y∈Y
n∈N

S

 ⊕
σ∈Irr∗(H)

(Mσ
n,y ⊗ Jσ)

R

 ⊕
τ∈Irr∗(K)

τ(ny)

︸ ︷︷ ︸

(∗)

T−1 (6)

where the last line invoked Equation (5) to move σ(n) past R.
We now focus on Expression (∗). By Proposition 2.1 we can write the vector form of

Expression (∗) as ⊕
σ∈Irr∗(H)
τ∈Irr∗(K)

(
(Mσ

n,y ⊗ Jσ)⊗ τ(ny)T
) · vec(R) = vec(∗). (7)

16

We next apply two types of simplifications to the block-diagonal matrix on the left. In
each, we observe that equalities among blocks allow us to simplify that block-diagonal
matrix, at the expense of arranging portions of vec(S−1T) and vec(∗) into block-diagonal
matrices. The first such observation is that computing(

A

A

)
·
(
x1

x2

)
=

(
y1

y2

)
is equivalent to computing A·(x1|x2) = (y1|y2). The second observation is that computing

(A|A) ·
(
x1

x2

)
= y

is equivalent to computing A · (x1 + x2) = y.
To start, we use the first observation to “un-repeat” certain repeated blocks so that

the sum is over Irr(H) and Irr(K) rather than Irr∗(H) and Irr∗(K). Equation 7 becomes: ⊕
σ∈Irr(H)
τ∈Irr(K)

(
(Mσ

n,y ⊗ Jσ)⊗ τ(ny)T
) ·X0 = Y0,

where X0 is a block-diagonal matrix whose entries coincide with the entries of R. Specif-
ically, there is a block of X0 (and Y0) for each pair (σ, τ) with σ ∈ Irr(H) and τ ∈ Irr(K),
and if σ appears m times in Irr∗(H) and τ appears m′ times in Irr∗(K), this block will
have width mm′.

Next, we notice that Jσ = Idσ ⊗ (1, 1, . . . 1). The first observation then allows us to
simplify each (σ, τ) block further, yielding: ⊕

σ∈Irr(H)
τ∈Irr(K)

(
(Mσ

n,y ⊗ (1, 1, . . . 1))⊗ τ(ny)T
) ·X1 = Y1 (8)

where again the entries of X1 coincide with the entries of R. Specifically, each (σ, τ)
block is replaced with a block whose height is reduced by a factor dσ and whose width is
multiplied by dσ.

Finally, the second observation allows us to simplify to: ⊕
σ∈Irr(H)
τ∈Irr(K)

Mσ
n,y ⊗ τ(ny)T

 ·X2 = Y1, (9)

where now X2 is a block-diagonal matrix whose entries are sums of entries of R, and Y1

is unchanged. Specifically, there are m = dim(σ)/(eσdσ) ones in the vector (1, 1, · · · , 1)
appearing in Equation (8), so the (σ, τ) block of X1 is replaced by one in X2 that has a
factor m smaller height (and whose entries are the sum of m entries of X1).

Performing the block-diagonal matrix multiplication in Equation (9) gives us Y1, and
from Y1, the entries in the desired Expression (∗). To do this efficiently, we will use the
parent-matrix and Lemma 3.7.

17

As in the statement of Lemma 3.8, for each n, y, let Pn,y be the parent matrix of the
matrices {Mσ

n,y : σ ∈ Irr(H)}. We replace each direct-summand in the parenthesized
factor on the left of Equation (9) with

Pn,y ⊗ τ(ny)T , (10)

which no longer depends on σ. Let X
(σ,τ)
2 and Y

(σ,τ)
1 be the (σ, τ) blocks of X2 and Y1

respectively. By applying Lemma 3.7 on each column of X
(σ,τ)
2 and Y

(σ,τ)
1 we obtain the

block-diagonal matrices X̃2
(σ,τ)

and Ỹ1
(σ,τ)

such that Y1 can be efficiently recovered from
computing, for each τ ∈ Irr(K), the matrix product:

(
Pn,y ⊗ τ(ny)T

)
·
(
X̃2

(σ1,τ)
|X̃2

(σ2,τ)
| · · · |X̃2

(σ|Irr(H)|,τ)
)

=

(
Ỹ1

(σ1,τ)
|Ỹ1

(σ2,τ)
| · · · |Ỹ1

(σ|Irr(H)|,τ)
)

where σ1, σ2, . . . , σ|Irr(H)| is an enumeration of Irr(H).
It remains to understand the dimensions of these block-diagonal matrix multiplication

(there is one for each τ ∈ Irr(K)). The square blocks of the block-diagonal matrix ⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T

have dimensions ai with the property that

∑
i a

2
i = O(|H/N | log |H/N |) · |K|, using our

earlier accounting for the block sizes of a parent matrix, together with the fact that∑
τ∈Irr(K) dim(τ)2 = |K|. Each ai × ai block is multiplied by an ai × wi block of ⊕

τ∈Irr(K)

(
X̃2

(σ1,τ)
|X̃2

(σ2,τ)
| · · · |Ỹ2

(σ|Irr(H)|,τ)
)

to yield an ai × wi block of ⊕
τ∈Irr(K)

(
Ỹ1

(σ1,τ)
|Ỹ1

(σ2,τ)
| · · · |Ỹ1

(σ|Irr(H)|,τ)
) .

By Lemma 3.7, the ai × wi blocks contain, in the aggregate, only 4 times the number
of entries in Y1, which equals the number of entries in Y0, which equals the number of
entries in vec(∗), which is |G|. Thus

∑
i aiwi ≤ 4|G|.

We conclude that the block-matrix multiplications ultimately yielding Expression (∗)
can be performed efficiently, as summarized in the following lemma.

Lemma 3.9. The map from ∑
n∈N

∑
y∈Y

⊕
τ∈Irr(K)

Pn,y ⊗ τ(ny)T

as computed from input α supported on HY = HK in Lemma 3.8, to a G-DFT, can be
computed at a cost of O(|G|ω/2+ε) operations, for all ε > 0.

18

Proof. We describe how to map a summand
⊕

τ∈Irr(K) Pn,y⊗τ(ny)T to the corresponding
summand of Expression (6). This map will be linear and will not depend on n, y, so we
apply it once to the entire sum computed by Lemma 3.8, to obtain Expression (6), which
is the promised G-DFT.

We need to perform matrix multiplications of format 〈ai, ai, wi〉, and we know that∑
i a

2
i = O(|H/N | log |H/N |) · |K| (call this quantity L, below) and

∑
i aiwi ≤ 4|G|.

The cost of such a multiplication is at most max(O(aω+ε
i), O(aω−1+ε

i wi)) for all ε > 0.
Replacing the maximum with a sum, and letting amax = maxi ai, we obtain an upper
bound on the number of operations of∑

i

O(aω+ε
i) +O(aω−1+ε

i wi) = O(aω−2+ε
max)

∑
i

a2
i + aiwi ≤ L(ω−2+ε)/2 · (L+ 4|G|). (11)

We need to pre-multiply by S and post-multiply by T−1 to obtain a summand of Expres-
sion (6). Both S and T−1 are block-diagonal with one block for each ρ ∈ Irr(G), with
dimension dim(ρ). Thus the cost of this final pre- and post- multiplication is∑

ρ∈Irr(G)

O(dim(ρ)ω+ε)

which is at most O(|G|ω/2+ε) by Proposition 2.2 with α = ω + ε. The theorem follows
from the fact that |H||K|/|N | ≤ |G|, and thus Expression (11) is also upper-bounded by
O(|G|ω/2+ε) (absorbing logarithmic terms into |G|ε/2).

We now have the main theorem putting together the entire triple subgroup reduction:

Theorem 3.10 (triple subgroup reduction). Let G be a finite group and let H,K be
proper subgroups with N = H ∩K normal in G. Then we can compute generalized DFTs
with respect to G at the cost of

• |K|/|N | many H-DFTs,

• O(|H||K| log |H/N |/|N |2) many inverse N -DFTs,

• O(|H/N | log |H/N |) many K-DFTs,

plus O(|G|ω/2+ε) operations, all repeated O(|G| log |G|/|HK|) many times, for all ε > 0.

Proof. By Lemma 3.8 we can compute the intermediate representation of a G-DFT sup-
ported on HK, and applying the map of Lemma 3.9 to this intermediate representation
yields a G-DFT supported on HK. By Theorem 2.5 we can compute a general G-DFT
at the cost of repeating these two steps O(|G| log |G|/|HK|) many times.

4 Triple subgroup structure in finite groups

Our main structural theorem on finite groups is the following

Theorem 4.1. There exists a monotone increasing function f(x) ≤ 2c
√

log x log log x for a
universal constant c ≥ 1, such that, for every nontrivial finite group G one of the following
holds

19

Name Family |W | |G|
Chevalley A`(q) (`+ 1)! qΘ(`2)

B`(q) 2``! qΘ(`2)

C`(q) 2``! qΘ(`2)

D`(q) 2`−1`! qΘ(`2)

Exceptional E6(q) O(1) qΘ(1)

Chevalley E7(q) O(1) qΘ(1)

E8(q) O(1) qΘ(1)

F4(q) O(1) qΘ(1)

G2(q) O(1) qΘ(1)

Steinberg 2A`(q
2) 2d`/2ed`/2e! qΘ(`2)

2D`(q
2) 2`−1(`− 1)! qΘ(`2)

2E6(q2) O(1) qΘ(1)

3D4(q3) O(1) qΘ(1)

Suzuki 2B2(q), q = 22n+1 O(1) qΘ(1)

Ree 2F4(q), q = 32n+1 O(1) qΘ(1)

2G2(q), q = 32n+1 O(1) qΘ(1)

Figure 4: Families of finite groups G of Lie type, together with the size of their associated
Weyl group W . These include all simple finite groups other than cyclic groups, the alternating
groups, the 26 sporadic groups, and the Tits group. See [Lev92, Wik17, Car89] for sources.
The Suzuki, Steinberg and Ree families are also called the twisted Chevalley groups.

20

1. G has a (possibly trivial) normal subgroup N and G/N is cyclic of prime order, or

2. G has a (possibly trivial) normal subgroup N and G/N has proper subgroups X,Y
with X ∩ Y = {1} and for which |X||N ||Y | ≥ |G|/f(|G|).

To connect this theorem to our usage in the previous sections, think of H as being the
subgroup XN and K as being the subgroup NY , where X and Y are lifts of X and Y ,
respectively, from G/N to G.

Proof. Let N be a maximal normal subgroup of G. Then G/N is simple. If it is cyclic of
prime order, then we are done. Otherwise we have the following cases, by the Classification
Theorem:

1. G/N is an alternating group An for n ≥ 5. In this case, let X be the subgroup of
G/N isomorphic to An−1 and Y the trivial subgroup of G/N .

2. G/N is a finite group of Lie Type. In this case, we refer to Table 4, and we have the
following description from Carter [Car89]. For Chevalley and exceptional Chevalley
groups, we have that there are subgroups B and U−w (for each w in the associated
Weyl group W) so that elements of G/N can be expressed uniquely as bnwuw, where
b ∈ B, nw is a lift of w ∈ W to G, and uw ∈ U−w (see Corollary 8.4.4 in Carter
[Car89]). Uniqueness implies that the conjugate subgroup nwU

−
w n
−1
w has trivial

intersection with B; also, by an averaging argument, there exists w ∈ W for which
|BnwU−w n−1

w | ≥ |G/N |/|W |. We take X = B and Y = nwU
−
w n
−1
w . For twisted

Chevalley groups, we have an identical situation (see Corollary 13.5.3 in Carter
[Car89]), with subgroup B replaced by B1 and subgroup U−w replaced by (U−w)1 (in
Carter’s notation). Again by an averaging argument there exists w ∈ W for which
|B1nw(U−w)1n−1

w | ≥ |G/N |/|W |, and subgroups B1 and nw(U−w)1n−1
w have trivial

intersection; so we take them as our X and Y , respectively. Finally we verify from
Table 4 that in all cases we have f(|G/N |) ≥ |W |. Thus

|X||N ||Y | ≥ |N ||G/N |/|W | ≥ |N ||G/N |/f(|G/N |) ≥ |G|/f(|G|)

where we used the fact that f is increasing.

3. G/N is a one of the 26 sporadic groups or the Tits group. In this case, we can take
X = Y = {1}, by choosing c in the definition of f(x) sufficiently large.

As one can see from the proof, the only requirements on f apart from that it should
be monotone increasing, are that f(|G|) > |W | for each entry in Table 4, f(n!) ≥ n for
sufficiently large n (for case 1), and f(|G|) ≥ |G| for each of the sporadic groups G (which
each have constant size).

5 Putting it together

Using the structural theorem and the new triple-subgroup reduction recursively, we obtain
our final result:

Theorem 5.1 (main). For any finite group G, there is an arithmetic algorithm computing
generalized DFTs with respect to G, using O(|G|ω/2+ε) operations, for any ε > 0.

21

Proof. Fix an arbitrary ε > 0. Consider the following recursive algorithm to compute a
G-DFT. If G is trivial then computing a G-DFT is as well. If G has a proper subgroup
H of order larger than |G|1−ε/2 then we apply Theorem 3.1 to compute a G-DFT via
several H-DFTs. Otherwise, applying Theorem 4.1, we obtain a (possibly trivial) normal
subgroup N , and two proper subgroups of G, H and K, with N = H ∩ K. If G/N is
cyclic of prime order, we apply Corollary 3.3 to compute a G-DFT via several N -DFTs.
Otherwise, we apply Theorem 3.10 to compute a G-DFT via several H-DFTs, K-DFTS,
and inverse N -DFTs.

Let T (n) denote an upper bound on the operation count of this recursive algorithm for
any group of order n. We will prove by induction on n, that there is a universal constant
Cε for which

T (n) ≤ Cεnω/2+ε log n.

In the case that we apply Theorem 3.1, the cost is the cost of [G : H] many H-DFTs
plus A0[G : H]|G|ω/2+ε/2 operations (where A0 is the constant hidden in the big-oh), and
by induction this is at most:

Cε[G : H]|H|ω/2+ε log |H|+A0[G : H]|G|ω/2+ε/2 ≤ Cε|G|ω/2+ε(log |G| − 1) +A0|G|ω/2+ε

which is indeed less than Cε|G|ω/2+ε log |G| provided Cε ≥ A0.
In the case that we apply Corollary 3.3, our cost is p many N -DFTs, plus A1|G|ω/2+ε)

operations, which by induction is at most

Cεp(|G|/p)ω/2+ε log(|G|/p) +A1|G|ω/2+ε ≤ Cε|G|ω/2+ε(log |G| − 1) +A1|G|ω/2+ε,

which is indeed less than Cε|G|ω/2+ε log |G| provided Cε ≥ A1.
Finally, in the case that we apply Theorem 3.10, let A2 be the maximum of the

constants hidden in the big-ohs in the statement of the Theorem (applied with ε/2). Note
that by selecting Cε sufficiently large, we may assume that G is sufficiently large, so that
two inequalities hold:

A2|H/N | log |H/N | ≤ |H/N |ω/2+ε

4A2f(|G|) log |G|
(12)

|K/N | ≤ |K/N |ω/2+ε

4A2f(|G|) log |G|
(13)

and this is possible because Theorem 4.1 implies that |H/N | (resp. |K/N |) are at least
|G|ε/2/f(|G|), as otherwise |K| (resp. |H|) would exceed |G|1−ε/2. Our cost is |K/N |many
H-DFTs, A2|H||K|/|N |2 log |H/N | many inverse N -DFTs, A2|H/N | log |H/N | many K-
DFTs, plus A2|G|ω/2+ε/2 operations, all repeated A2|G| log |G|/|HK| ≤ A2f(|G|) log |G|
times. By induction, this is at most(

Cε|K/N ||H|ω/2+ε log |H|+ CεA2|H||K|/|N |2 log |H/N ||N |ω/2+ε log |N |

+ CεA2|H/N | log |H/N ||K|ω/2+ε log |K|+A2|G|ω/2+ε/2
)
·A2f(|G|) log |G|

Now, using Inequalities (12-13) the first three summands are each at most

Cε|G|ω/2+ε log |G|
4A2f(|G|) log |G|

as is the fourth summand provided |G| is sufficiently large. Thus the entire expression is
at most Cε|G|ω/2+ε log |G|, as required. This completes the proof.

22

6 Open problems

Is there a proof of Theorem 4.1 that does not need the Classification Theorem? A second
question is whether the dependence on ω can be removed. Alternatively, can one show
that a running time that depends on ω is necessary by showing that an exponent-one DFT
for a certain family of groups would imply ω = 2?

Acknowledgements. We thank Jonah Blasiak, Tom Church, and Henry Cohn for
useful discussions during an AIM SQuaRE meeting, and Chloe Hsu for her helpful com-
ments on an earlier version of this paper. We thank the FOCS and SICOMP referees for
their careful reading and detailed suggestions.

References

[Bau91] Ulrich Baum. Existence and efficient construction of fast Fourier transforms
on supersolvable groups. computational complexity, 1(3):235–256, Sep 1991.

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity
Theory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997.

[Bet84] Thomas Beth. Verfahren der schnellen Fourier-Transformation. Teubner,
1984.

[BR90] Laszlo Babai and Lajos Ronyai. Computing irreducible representations of
finite groups. Math. Comput., 55(192):705–722, 1990.

[Car89] Roger W Carter. Simple groups of Lie type, volume 22. John Wiley & Sons,
1989.

[CB93] Michael Clausen and Ulrich Baum. Fast Fourier transforms. Wissenschaftsver-
lag, 1993.

[CKSU05] Henry Cohn, Robert D. Kleinberg, Balázs Szegedy, and Christopher Umans.
Group-theoretic algorithms for matrix multiplication. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-25 Octo-
ber 2005, Pittsburgh, PA, USA, Proceedings, pages 379–388. IEEE Computer
Society, 2005.

[Cla89] Michael Clausen. Fast generalized Fourier transforms. Theoretical Computer
Science, 67(1):55–63, 1989.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[CU03] Henry Cohn and Christopher Umans. A group-theoretic approach to fast ma-
trix multiplication. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages
438–449. IEEE Computer Society, 2003.

[HJ91] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991.

23

[HU18a] Chloe Ching-Yun Hsu and Chris Umans. A fast generalized DFT for finite
groups of lie type. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 1047–1059. SIAM, 2018.

[HU18b] Chloe Ching-Yun Hsu and Chris Umans. A fast generalized dft for finite
groups of lie type. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1047–1059, 2018.

[HU20] Chloe Ching-Yun Hsu and Chris Umans. A new algorithm for fast generalized
dfts. ACM Trans. Algorithms, 16(1):4:1–4:20, 2020. Full version of [HU18b].

[Hup98] Bertram Huppert. Character Theory of Finite Groups. De Gruyter Exposi-
tions in Mathematics, 1998.

[Kon08] Imre Risi Kondor. Group theoretical methods in machine learning. PhD thesis,
Columbia University, 2008.

[Kon10] Risi Kondor. A fourier space algorithm for solving quadratic assignment prob-
lems. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 1017–1028. SIAM, 2010.

[Lev92] Arieh Lev. On large subgroups of finite groups. Journal of Algebra,
152(2):434–438, 1992.

[Mas98] David Keith Maslen. The efficient computation of fourier transforms on the
symmetric group. Math. Comput., 67(223):1121–1147, 1998.

[MR97a] David Maslen and Daniel Rockmore. Separation of variables and the com-
putation of Fourier transforms on finite groups, I. Journal of the American
Mathematical Society, 10(1):169–214, 1997.

[MR97b] David K Maslen and Daniel N Rockmore. Generalized FFTs – a survey of
some recent results. In Groups and Computation II, volume 28, pages 183–287.
American Mathematical Soc., 1997.

[MRW16a] David Maslen, Daniel N Rockmore, and Sarah Wolff. The efficient com-
putation of Fourier transforms on semisimple algebras. arXiv preprint
arXiv:1609.02634, 2016. To appear in Journal of Fourier Analysis and Appli-
cations.

[MRW16b] David Maslen, Daniel N Rockmore, and Sarah Wolff. Separation of variables
and the computation of Fourier transforms on finite groups, II. Journal of
Fourier Analysis and Applications, pages 1–59, 2016.

[Roc95] Daniel N. Rockmore. Fast Fourier transforms for wreath products. Applied
and Computational Harmonic Analysis, 2(3):279 – 292, 1995.

[Roc97] Daniel Rockmore. Some applications of generalized FFTs. In Proceedings of
the 1995 DIMACS Workshop on Groups and Computation, pages 329–369.
June, 1997.

[Roc02] Daniel N Rockmore. Recent progress and applications in group FFTs. In
Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth
Asilomar Conference on, volume 1, pages 773–777. IEEE, 2002.

[Wik17] Wikipedia. List of finite simple groups — wikipedia, the free encyclopedia,
2017. [Online; accessed 30-June-2017].

24

	Introduction
	Past and related work

	Preliminaries
	Basic representation theory
	Basic Clifford theory
	Generalized DFTs and inverse generalized DFTs
	Main technical ideas

	General strategy: reduction to subgroups
	The single subgroup reduction
	The double subgroup reduction
	The triple subgroup reduction
	Choosing the labelings f
	Computing the intermediate representation
	Lifting to a G-DFT

	Triple subgroup structure in finite groups
	Putting it together
	Open problems

