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Outline 

• coping with intractibility 

– approximation algorithms 

• set cover 

• TSP 

• center selection 

 

• randomness in algorithms 
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Optimization Problems 

• many hard problems (especially NP-hard) 

are optimization problems 

– e.g. find shortest TSP tour 

– e.g. find smallest vertex cover  

– e.g. find largest clique 

 

– may be minimization or maximization problem 

– “OPT” = value of optimal solution 
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Approximation Algorithms 

• often happy with approximately optimal 

solution 

– warning: lots of heuristics 

– we want approximation algorithm with 

guaranteed approximation ratio of r 

– meaning: on every input x, output is 

guaranteed to have value  

   at most r*opt for minimization 

   at least opt/r for maximization 
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Set Cover 

• Given subsets S1, S2, …, Sn of a universe 

U of size m, and an integer k 

– is there a cover J of size k 

– “cover”: [j 2J Sj = U 

 

Theorem: set-cover is NP-complete 

– in NP (why?) 

– reduce from vertex cover (how?) 
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Set cover 

• Greedy approximation algorithm: 

– at each step, pick set covering largest number 

of remaining uncovered items 

 

Theorem: greedy set cover algorithm 

achieves an approximation ratio of (ln m + 1) 
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Set cover 

Theorem: greedy set cover algorithm 

achieves an approximation ratio of (ln m + 1) 

Proof: 

– let ri be # of items remaining after iteration i 

– r0 = |U| = m 

– Claim: ri · (1 – 1/OPT)ri-1 

• proof: OPT sets cover all remaining items so some 

set covers at least 1/OPT fraction 
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Set cover 

Theorem: greedy set cover algorithm 

achieves an approximation ratio of (ln m + 1) 

Proof: 

– Claim: ri · (1 – 1/OPT)ri-1 

– so ri · (1 – 1/OPT)i m 

– after OPT¢ln m + 1 iterations, # remaining 

elements is at most m/(2m) · ½ 

– so must have covered all m elements.  
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(1-1/x)x · 1/e 

Travelling Salesperson Problem 

• given a complete graph and edge weights 

satisfying the triangle inequality  
wa,b + wb,c ¸ wa,c for all vertices a,b,c 

– find a shortest tour that visits every vertex 

Theorem: TSP with triangle inequality is 

NP-complete 

– in NP (why?) 

– reduce from Hamilton cycle (how?) 
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TSP approximation algorithm 

• two key observations: 

– tour that visits vertices more than once can be 

short-circuited without increasing cost, by 

triangle inequality 

• short-circuit = skip already-visited vertices 

 

– (multi-)graph with all even degrees has 

Eulerian tour: a tour that uses all edges 

• proof? 

 

 
May 29, 2014 CS38 Lecture 18 10 

TSP approximation algorithm 

• First approximation algorithm: 

– find a Minimum Spanning Tree T 

– double all the edges 

– output an Euler tour (with short-circuiting) 

 

Theorem: this approximation algorithm 

achieves approximation ratio 2 
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TSP approximation algorithm 

Theorem: this approximation algorithm 

achieves approximation ratio 2 

 

Proof:  

– optimal tour includes a MST, so wt(T) · OPT 

– tour we output has weight at most 2¢wt(T) 
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Christofide’s algorithm 

• Second approximation algorithm: 

– find a Minimum Spanning Tree T 

– even number of odd-degree vertices (why?) 

– find a min-weight matching M on these 

– output an Euler tour on M [ T (with short-

circuiting) 

Theorem: this approximation algorithm 

achieves approximation ratio 1.5 
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Christofide’s algorithm 

Theorem: this approximation algorithm 

achieves approximation ratio 1.5 

Proof: 

– as before OPT ¸ wt(T) 

– let R be opt. tour on odd deg. vertices W only  

– even/odd edges of R both constitute perfect 

matchings on W 

– thus wt(M) · wt(R)/2 · OPT/2  

– total: wt(M) + wt(T) · 1.5¢OPT  
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Input.  Set of n sites s1, …, sn and an integer k  >  0. 

 

Center selection problem.  Select set of k centers C so that maximum 

distance r(C) from a site to nearest center is minimized. 

15 

r(C) 

Center selection problem 

k = 4 centers 

center 

site 
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Center selection problem 

Input.  Set of n sites s1, …, sn and an integer k  >  0. 

 

Center selection problem.  Select set of k centers C so that maximum 

distance r(C) from a site to nearest center is minimized. 

 

Notation.   

・dist(x, y) = distance between sites x and y. 

・dist(si, C) = min c ∈ C dist(si, c)  = distance from si to closest center. 

・r(C) = maxi dist(si, C) = smallest covering radius. 

 

Goal.  Find set of centers C that minimizes r(C), subject to | C | = k. 

 

Distance function properties. 

・dist(x, x) = 0       [ identity ] 

・dist(x, y) = dist(y, x)     [ symmetry ] 

・dist(x, y)  ≤  dist(x, z) + dist(z, y) [ triangle inequality ] 
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Center selection example 

Ex:  each site is a point in the plane, a center can be any point in the plane, 

dist(x, y) = Euclidean distance. 

 

Remark:  search can be infinite! 

center 

r(C) 

site 

k = 4 centers 

Greedy algorithm.  Put the first center at the best possible location for a 

single center, and then keep adding centers so as to reduce the covering 

radius each time by as much as possible.  

 

Remark:  arbitrarily bad! 
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Greedy algorithm:  a false start 

greedy center 1 

center 

site 

k = 2 centers 
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Repeatedly choose next center to be site farthest from any existing center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property.  Upon termination, all centers in C are pairwise at least r(C) apart. 

Pf.  By construction of algorithm. 

GREEDY-CENTER-SELECTION (k, n, s1, s2, … , sn)                           


C ← ∅. 

REPEAT k times 

      Select a site si with maximum distance dist(si, C). 

      C ← C ∪  si. 

RETURN C. 
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Center selection:  greedy algorithm 

site farthest 

from any center 
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Center selection:  analysis of greedy algorithm 

Theorem.  Let C* be an optimal set of centers. Then r(C)  ≤  2r(C*). 

Pf.  [by contradiction]  Assume r(C*) < ½ r(C). 

・For each site ci ∈ C, consider ball of radius ½ r(C) around it. 

・Exactly one ci
*
 in each ball; let ci be the site paired with ci

*
. 

・Consider any site s and its closest center ci
*
 ∈ C*. 

・dist(s, C)  ≤  dist(s, ci)  ≤  dist(s, ci*) + dist(ci*, ci)  ≤  2r(C*). 

・Thus, r(C)  ≤  2r(C*).   ▪ 

½ r(C) 

ci 

ci* 
s 

  r(C*) since ci* is closest center 

½ r(C) 

½ r(C) 

Δ-inequality 

C* 

site 
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Center selection 

Lemma.  Let C* be an optimal set of centers. Then r(C)  ≤  2r (C*). 

 

Theorem.  Greedy algorithm is a 2-approximation for center selection 

problem. 

 

Remark.  Greedy algorithm always places centers at sites, but is still within a 

factor of 2 of best solution that is allowed to place centers anywhere. 

 

 

 

 

Question.  Is there hope of a 3/2-approximation? 4/3?  

e.g., points in the plane 

 

 

Randomness  

in algorithms 
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Randomization 

Algorithmic design patterns. 

・Greedy. 

・Divide-and-conquer. 

・Dynamic programming. 

・Network flow. 

・Randomization. 

 

Randomization.  Allow fair coin flip in unit time. 

 

Why randomize?  Can lead to simplest, fastest, or only known algorithm for 

a particular problem. 

 

Ex.  Symmetry breaking protocols, graph algorithms, quicksort, hashing, 

load balancing, Monte Carlo integration, cryptography. 

in practice, access to a pseudo-random number generator 

 

 

Contention 

resolution 
 

May 29, 2014 CS38 Lecture 18 24 



5/29/2014 

5 

25 

Contention resolution in a distributed system 

Contention resolution.  Given n processes P1, …, Pn, each competing for 

access to a shared database. If two or more processes access the database 

simultaneously, all processes are locked out. Devise protocol to ensure all 

processes get through on a regular basis. 

 

Restriction.  Processes can't communicate. 

 

Challenge.  Need symmetry-breaking paradigm. 

P1 

P2 

Pn 

. 

. 

. 
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Contention resolution:  randomized protocol 

Protocol.  Each process requests access to the database at time t with 

probability p = 1/n. 

 

Claim.  Let S[i, t] = event that process i succeeds in accessing the database at 

time t. Then 1 / (e ⋅ n)  ≤  Pr [S(i, t)]  ≤  1/(2n). 

 

Pf.  By independence,   Pr [S(i, t)] =  p (1 
–

  p) n – 1
.
  

 

 

・Setting p = 1/n, we have Pr [S(i, t)]  =   1/n (1 – 1/n) n – 1
.  ▪ 

 

 

 

Useful facts from calculus.  As n increases from 2, the function: 

・(1 – 1/n) n  -1
 converges monotonically from 1/4 up to 1 / e. 

・(1 – 1/n) n – 1
 converges monotonically from 1/2 down to 1 / e. 

process i requests access none of remaining n-1 processes request access 

value that maximizes Pr[S(i, t)] between 1/e and 1/2 

 

 

Claim.  The probability that process i fails to access the database in 

en rounds is at most 1 / e. After e ⋅ n (c ln n) rounds, the probability ≤ n -c
. 

 

Pf.  Let F[i, t] = event that process i fails to access database in rounds 1 

through t. By independence and previous claim, we have 

Pr [F[i, t]]  ≤  (1 – 1/(en)) t
. 

 

・Choose t = ⎡e ⋅ n⎤: 

 

・Choose t = ⎡e ⋅ n⎤ ⎡c ln n⎤: 
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Contention Resolution:  randomized protocol 
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Contention Resolution:  randomized protocol 

Claim.  The probability that all processes succeed within 2e ⋅ n ln n rounds 

is ≥ 1 – 1 / n. 

 

Pf.  Let F[t] = event that at least one of the n processes fails to access 

database in any of the rounds 1 through t. 

 

 

 

 

 

・Choosing t = 2 ⎡en⎤ ⎡c ln n⎤ yields  Pr[F[t]] ≤ n · n-2 = 1 / n.  ▪ 

 

 

 

       Union bound.  Given events E1, …, En, 

union bound previous slide 

 

 

Global  

min cut 
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Global minimum cut 

Global min cut.  Given a connected, undirected graph G = (V, E), 

find a cut (A, B) of minimum cardinality. 

 

Applications.  Partitioning items in a database, identify clusters of related 

documents, network reliability, network design, circuit design, TSP solvers. 

 

Network flow solution.  

・Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u). 

・Pick some vertex s and compute min s- v cut separating s from each 

other vertex v ∈ V. 

 

 

False intuition.  Global min-cut is harder than min s-t cut. 
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Contraction algorithm 

Contraction algorithm.  [Karger 1995] 

・Pick an edge e = (u, v) uniformly at random. 

・Contract edge e. 

- replace u and v by single new super-node w 

- preserve edges, updating endpoints of u and v to w 

- keep parallel edges, but delete self-loops 

・Repeat until graph has just two nodes v1 and v1' 

・Return the cut (all nodes that were contracted to form v1). 

u v w contract u-v 

a b c 

e 

f 

c a b 

f 

d 

32 

Contraction algorithm 

Contraction algorithm.  [Karger 1995] 

・Pick an edge e = (u, v) uniformly at random. 

・Contract edge e. 

- replace u and v by single new super-node w 

- preserve edges, updating endpoints of u and v to w 

- keep parallel edges, but delete self-loops 

・Repeat until graph has just two nodes v1 and v1' 

・Return the cut (all nodes that were contracted to form v1). 

Reference: Thore Husfeldt 
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Contraction algorithm 

Claim.  The contraction algorithm returns a min cut with prob  ≥  2 / n2
. 

 

Pf.  Consider a global min-cut (A*, B*) of G. 

・Let F* be edges with one endpoint in A* and the other in B*. 

・Let k  =  | F* |  = size of min cut. 

・In first step, algorithm contracts an edge in F* probability k / | E |. 

・Every node has degree ≥ k since otherwise (A*, B*) would not be 

a min-cut    | E | ≥ ½ k n. 

・Thus, algorithm contracts an edge in F* with probability ≤  2 / n. 

A* 
B* 

F* 
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Contraction algorithm 

Claim.  The contraction algorithm returns a min cut with prob  ≥  2 / n2
. 

 

Pf.  Consider a global min-cut (A*, B*) of G. 

・Let F* be edges with one endpoint in A* and the other in B*. 

・Let k  =  | F* |  = size of min cut. 

・Let G' be graph after j iterations. There are n' = n – j supernodes. 

・Suppose no edge in F* has been contracted. The min-cut in G' is still k. 

・Since value of min-cut is k, | E' | ≥ ½ k n'. 

・Thus, algorithm contracts an edge in F* with probability ≤  2 / n'. 

・Let Ej = event that an edge in F* is not contracted in iteration j. 
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Contraction algorithm 

Amplification.  To amplify the probability of success, run the contraction 

algorithm many times. 

 

Claim.  If we repeat the contraction algorithm n2 ln n times, 

then the probability of failing to find the global min-cut is  ≤ 1 / n2
. 

 

Pf.  By independence, the probability of failure is at most 

(1 – 1/x)
x
  ≤ 1/e 

 with independent random choices, 
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Contraction algorithm:  example execution 

trial 1 

trial 2 

trial 3 

trial 4 

trial 5 

(finds min cut) 

trial 6 

... 
Reference: Thore Husfeldt 

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
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Global min cut:  context 

Remark.  Overall running time is slow since we perform Θ(n2 log n) iterations 

and each takes Ω(m) time. 

 

Improvement.  [Karger-Stein 1996]   O(n2 log3 n). 

・Early iterations are less risky than later ones: probability of contracting 

an edge in min cut hits 50% when n / √2 nodes remain. 

・Run contraction algorithm until n / √2 nodes remain. 

・Run contraction algorithm twice on resulting graph and 

return best of two cuts.  

 

Extensions.  Naturally generalizes to handle positive weights. 

 

Best known.  [Karger 2000]  O(m log3 n). 

faster than best known max flow algorithm or 

deterministic global min cut algorithm 


