
5/29/2014

1

CS38

Introduction to Algorithms

Lecture 18

May 29, 2014

May 29, 2014 1 CS38 Lecture 18 May 29, 2014 CS38 Lecture 18 2

Outline

• coping with intractibility

– approximation algorithms

• set cover

• TSP

• center selection

• randomness in algorithms

May 29, 2014 3

Optimization Problems

• many hard problems (especially NP-hard)

are optimization problems

– e.g. find shortest TSP tour

– e.g. find smallest vertex cover

– e.g. find largest clique

– may be minimization or maximization problem

– “OPT” = value of optimal solution

CS38 Lecture 18 May 29, 2014 4

Approximation Algorithms

• often happy with approximately optimal

solution

– warning: lots of heuristics

– we want approximation algorithm with

guaranteed approximation ratio of r

– meaning: on every input x, output is

guaranteed to have value

 at most r*opt for minimization

 at least opt/r for maximization

CS38 Lecture 18

Set Cover

• Given subsets S1, S2, …, Sn of a universe

U of size m, and an integer k

– is there a cover J of size k

– “cover”: [j 2J Sj = U

Theorem: set-cover is NP-complete

– in NP (why?)

– reduce from vertex cover (how?)

May 29, 2014 CS38 Lecture 18 5

Set cover

• Greedy approximation algorithm:

– at each step, pick set covering largest number

of remaining uncovered items

Theorem: greedy set cover algorithm

achieves an approximation ratio of (ln m + 1)

May 29, 2014 CS38 Lecture 18 6

5/29/2014

2

Set cover

Theorem: greedy set cover algorithm

achieves an approximation ratio of (ln m + 1)

Proof:

– let ri be # of items remaining after iteration i

– r0 = |U| = m

– Claim: ri · (1 – 1/OPT)ri-1

• proof: OPT sets cover all remaining items so some

set covers at least 1/OPT fraction

May 29, 2014 CS38 Lecture 18 7

Set cover

Theorem: greedy set cover algorithm

achieves an approximation ratio of (ln m + 1)

Proof:

– Claim: ri · (1 – 1/OPT)ri-1

– so ri · (1 – 1/OPT)i m

– after OPT¢ln m + 1 iterations, # remaining

elements is at most m/(2m) · ½

– so must have covered all m elements.

May 29, 2014 CS38 Lecture 18 8

(1-1/x)x · 1/e

Travelling Salesperson Problem

• given a complete graph and edge weights

satisfying the triangle inequality
wa,b + wb,c ¸ wa,c for all vertices a,b,c

– find a shortest tour that visits every vertex

Theorem: TSP with triangle inequality is

NP-complete

– in NP (why?)

– reduce from Hamilton cycle (how?)

May 29, 2014 CS38 Lecture 18 9

TSP approximation algorithm

• two key observations:

– tour that visits vertices more than once can be

short-circuited without increasing cost, by

triangle inequality

• short-circuit = skip already-visited vertices

– (multi-)graph with all even degrees has

Eulerian tour: a tour that uses all edges

• proof?

May 29, 2014 CS38 Lecture 18 10

TSP approximation algorithm

• First approximation algorithm:

– find a Minimum Spanning Tree T

– double all the edges

– output an Euler tour (with short-circuiting)

Theorem: this approximation algorithm

achieves approximation ratio 2

May 29, 2014 CS38 Lecture 18 11

TSP approximation algorithm

Theorem: this approximation algorithm

achieves approximation ratio 2

Proof:

– optimal tour includes a MST, so wt(T) · OPT

– tour we output has weight at most 2¢wt(T)

May 29, 2014 CS38 Lecture 18 12

5/29/2014

3

Christofide’s algorithm

• Second approximation algorithm:

– find a Minimum Spanning Tree T

– even number of odd-degree vertices (why?)

– find a min-weight matching M on these

– output an Euler tour on M [T (with short-

circuiting)

Theorem: this approximation algorithm

achieves approximation ratio 1.5

May 29, 2014 CS38 Lecture 18 13

Christofide’s algorithm

Theorem: this approximation algorithm

achieves approximation ratio 1.5

Proof:

– as before OPT ¸ wt(T)

– let R be opt. tour on odd deg. vertices W only

– even/odd edges of R both constitute perfect

matchings on W

– thus wt(M) · wt(R)/2 · OPT/2

– total: wt(M) + wt(T) · 1.5¢OPT

May 29, 2014 CS38 Lecture 18 14

Input. Set of n sites s1, …, sn and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum

distance r(C) from a site to nearest center is minimized.

15

r(C)

Center selection problem

k = 4 centers

center

site

16

Center selection problem

Input. Set of n sites s1, …, sn and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum

distance r(C) from a site to nearest center is minimized.

Notation.

・dist(x, y) = distance between sites x and y.

・dist(si, C) = min c ∈ C dist(si, c) = distance from si to closest center.

・r(C) = maxi dist(si, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to | C | = k.

Distance function properties.

・dist(x, x) = 0 [identity]

・dist(x, y) = dist(y, x) [symmetry]

・dist(x, y) ≤ dist(x, z) + dist(z, y) [triangle inequality]

17

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane,

dist(x, y) = Euclidean distance.

Remark: search can be infinite!

center

r(C)

site

k = 4 centers

Greedy algorithm. Put the first center at the best possible location for a

single center, and then keep adding centers so as to reduce the covering

radius each time by as much as possible.

Remark: arbitrarily bad!

18

Greedy algorithm: a false start

greedy center 1

center

site

k = 2 centers

5/29/2014

4

Repeatedly choose next center to be site farthest from any existing center.

Property. Upon termination, all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

GREEDY-CENTER-SELECTION (k, n, s1, s2, … , sn)
__

C ← ∅.

REPEAT k times

 Select a site si with maximum distance dist(si, C).

 C ← C ∪ si.

RETURN C.
__

19

Center selection: greedy algorithm

site farthest

from any center

20

Center selection: analysis of greedy algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).

Pf. [by contradiction] Assume r(C*) < ½ r(C).

・For each site ci ∈ C, consider ball of radius ½ r(C) around it.

・Exactly one ci
*
 in each ball; let ci be the site paired with ci

*
.

・Consider any site s and its closest center ci
*
 ∈ C*.

・dist(s, C) ≤ dist(s, ci) ≤ dist(s, ci*) + dist(ci*, ci) ≤ 2r(C*).

・Thus, r(C) ≤ 2r(C*). ▪

½ r(C)

ci

ci*
s

 r(C*) since ci* is closest center

½ r(C)

½ r(C)

Δ-inequality

C*

site

21

Center selection

Lemma. Let C* be an optimal set of centers. Then r(C) ≤ 2r (C*).

Theorem. Greedy algorithm is a 2-approximation for center selection

problem.

Remark. Greedy algorithm always places centers at sites, but is still within a

factor of 2 of best solution that is allowed to place centers anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Randomness

in algorithms

May 29, 2014 CS38 Lecture 18 22

23

Randomization

Algorithmic design patterns.

・Greedy.

・Divide-and-conquer.

・Dynamic programming.

・Network flow.

・Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for

a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,

load balancing, Monte Carlo integration, cryptography.

in practice, access to a pseudo-random number generator

Contention

resolution

May 29, 2014 CS38 Lecture 18 24

5/29/2014

5

25

Contention resolution in a distributed system

Contention resolution. Given n processes P1, …, Pn, each competing for

access to a shared database. If two or more processes access the database

simultaneously, all processes are locked out. Devise protocol to ensure all

processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.

26

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with

probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at

time t. Then 1 / (e ⋅ n) ≤ Pr [S(i, t)] ≤ 1/(2n).

Pf. By independence, Pr [S(i, t)] = p (1
–

 p) n – 1
.

・Setting p = 1/n, we have Pr [S(i, t)] = 1/n (1 – 1/n) n – 1
. ▪

Useful facts from calculus. As n increases from 2, the function:

・(1 – 1/n) n -1
 converges monotonically from 1/4 up to 1 / e.

・(1 – 1/n) n – 1
 converges monotonically from 1/2 down to 1 / e.

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Claim. The probability that process i fails to access the database in

en rounds is at most 1 / e. After e ⋅ n (c ln n) rounds, the probability ≤ n -c
.

Pf. Let F[i, t] = event that process i fails to access database in rounds 1

through t. By independence and previous claim, we have

Pr [F[i, t]] ≤ (1 – 1/(en)) t
.

・Choose t = ⎡e ⋅ n⎤:

・Choose t = ⎡e ⋅ n⎤ ⎡c ln n⎤:

27

Contention Resolution: randomized protocol

28

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within 2e ⋅ n ln n rounds

is ≥ 1 – 1 / n.

Pf. Let F[t] = event that at least one of the n processes fails to access

database in any of the rounds 1 through t.

・Choosing t = 2 ⎡en⎤ ⎡c ln n⎤ yields Pr[F[t]] ≤ n · n-2 = 1 / n. ▪

 Union bound. Given events E1, …, En,

union bound previous slide

Global

min cut

May 29, 2014 CS38 Lecture 18 29

30

Global minimum cut

Global min cut. Given a connected, undirected graph G = (V, E),

find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related

documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

・Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).

・Pick some vertex s and compute min s- v cut separating s from each

other vertex v ∈ V.

False intuition. Global min-cut is harder than min s-t cut.

5/29/2014

6

31

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.

- replace u and v by single new super-node w

- preserve edges, updating endpoints of u and v to w

- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1'

・Return the cut (all nodes that were contracted to form v1).

u v w contract u-v

a b c

e

f

c a b

f

d

32

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.

- replace u and v by single new super-node w

- preserve edges, updating endpoints of u and v to w

- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1'

・Return the cut (all nodes that were contracted to form v1).

Reference: Thore Husfeldt

33

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2 / n2
.

Pf. Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k = | F* | = size of min cut.

・In first step, algorithm contracts an edge in F* probability k / | E |.

・Every node has degree ≥ k since otherwise (A*, B*) would not be

a min-cut | E | ≥ ½ k n.

・Thus, algorithm contracts an edge in F* with probability ≤ 2 / n.

A*
B*

F*

34

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2 / n2
.

Pf. Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k = | F* | = size of min cut.

・Let G' be graph after j iterations. There are n' = n – j supernodes.

・Suppose no edge in F* has been contracted. The min-cut in G' is still k.

・Since value of min-cut is k, | E' | ≥ ½ k n'.

・Thus, algorithm contracts an edge in F* with probability ≤ 2 / n'.

・Let Ej = event that an edge in F* is not contracted in iteration j.

35

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.

Claim. If we repeat the contraction algorithm n2 ln n times,

then the probability of failing to find the global min-cut is ≤ 1 / n2
.

Pf. By independence, the probability of failure is at most

(1 – 1/x)
x
 ≤ 1/e

 with independent random choices,

36

Contraction algorithm: example execution

trial 1

trial 2

trial 3

trial 4

trial 5

(finds min cut)

trial 6

...
Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

5/29/2014

7

37

Global min cut: context

Remark. Overall running time is slow since we perform Θ(n2 log n) iterations

and each takes Ω(m) time.

Improvement. [Karger-Stein 1996] O(n2 log3 n).

・Early iterations are less risky than later ones: probability of contracting

an edge in min cut hits 50% when n / √2 nodes remain.

・Run contraction algorithm until n / √2 nodes remain.

・Run contraction algorithm twice on resulting graph and

return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3 n).

faster than best known max flow algorithm or

deterministic global min cut algorithm

