CS38 Introduction to Algorithms

Lecture 18 May 29, 2014

May 29, 2014

CS38 Lecture 18

Outline

- coping with intractibility
 - approximation algorithms
 - set cover
 - TSF
 - · center selection
- · randomness in algorithms

May 29, 2014

CS38 Lecture 18

Optimization Problems

- many hard problems (especially NP-hard) are optimization problems
 - e.g. find shortest TSP tour
 - e.g. find smallest vertex cover
 - e.g. find *largest* clique
 - may be minimization or maximization problem
 - "OPT" = value of optimal solution

May 29, 2014 CS38 Lecture 18

Approximation Algorithms

- often happy with approximately optimal solution
 - warning: lots of heuristics
 - we want approximation algorithm with guaranteed approximation ratio of r
 - meaning: on every input x, output is guaranteed to have value

at most r*opt for minimization at least opt/r for maximization

May 29, 2014

CS38 Lecture 18

Set Cover

- Given subsets S₁, S₂, ..., S_n of a universe U of size m, and an integer k
 - is there a cover J of size k
 - "cover": $\bigcup_{j \in J} S_j = U$

Theorem: set-cover is NP-complete

- in NP (why?)
- reduce from vertex cover (how?)

May 29, 2014 CS38 Lecture 18 5

Set cover

- · Greedy approximation algorithm:
 - at each step, pick set covering largest number of remaining uncovered items

<u>Theorem</u>: greedy set cover algorithm achieves an approximation ratio of (ln m + 1)

May 29, 2014

CS38 Lecture 18

Set cover

<u>Theorem</u>: greedy set cover algorithm achieves an approximation ratio of (ln m + 1) **Proof**:

- .001.
- let \boldsymbol{r}_{i} be # of items remaining after iteration i
- $-r_0 = |U| = m$
- Claim: $r_i \le (1 1/OPT)r_{i-1}$
 - proof: OPT sets cover all remaining items so *some* set covers at least 1/OPT fraction

May 29, 2014

CS38 Lecture 18

Set cover

<u>Theorem</u>: greedy set cover algorithm achieves an approximation ratio of (ln m + 1)

- Proof:
 - Claim: $r_i \le (1 1/OPT)r_{i-1}$

 $(1-1/x)^x \le 1/e$

10

12

- $so r_i < (1 1/OPT)^i m$
- after OPT·ln m + 1 iterations, # remaining elements is at most m/(2m) < ½
- so must have covered all m elements.

May 29, 2014

CS38 Lecture 18

Travelling Salesperson Problem

 given a complete graph and edge weights satisfying the triangle inequality

 $w_{a,b}$ + $w_{b,c} \ge w_{a,c}$ for all vertices a,b,c

- find a shortest tour that visits every vertex

<u>Theorem:</u> TSP with triangle inequality is NP-complete

- in NP (why?)
- reduce from Hamilton cycle (how?)

May 29, 2014 CS38 Lecture 18

TSP approximation algorithm

- two key observations:
 - tour that visits vertices more than once can be short-circuited without increasing cost, by triangle inequality
 - short-circuit = skip already-visited vertices
 - (multi-)graph with all even degrees has Eulerian tour: a tour that uses all edges
 - proof?

May 29, 2014 CS38 Lecture 18

TSP approximation algorithm

- First approximation algorithm:
 - find a Minimum Spanning Tree T
 - double all the edges
 - output an Euler tour (with short-circuiting)

<u>Theorem</u>: this approximation algorithm achieves approximation ratio 2

May 29, 2014

CS38 Lecture 18

TSP approximation algorithm

<u>Theorem</u>: this approximation algorithm achieves approximation ratio 2

Proof:

- optimal tour includes a MST, so $wt(T) \le OPT$
- tour we output has weight at most 2·wt(T)

May 29, 2014

11

CS38 Lecture 18

Christofide's algorithm

- · Second approximation algorithm:
 - find a Minimum Spanning Tree T
 - even number of odd-degree vertices (why?)
 - find a min-weight matching M on these
 - output an Euler tour on M ∪ T (with shortcircuiting)

<u>Theorem</u>: this approximation algorithm achieves approximation ratio 1.5

May 29, 2014 CS38 Lecture 18

Christofide's algorithm

<u>Theorem</u>: this approximation algorithm achieves approximation ratio 1.5

Proof:

13

- as before OPT ≥ wt(T)
- let R be opt. tour on odd deg. vertices W only
- even/odd edges of R both constitute perfect matchings on W
- thus $wt(M) \le wt(R)/2 \le OPT/2$
- total: wt(M) + wt(T) ≤ $1.5 \cdot OPT$

May 29, 2014 CS38 Lecture 18 14

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION (k, n, s₁, s₂, ..., s₀)

C ← Ø.

REPEAT k times

Select a site s, with maximum distance dist(s₀, C).

C ← C ∪ s₀.

RETURN C. site farthest from any center

Property. Upon termination, all centers in C are pairwise at least t(C) apart.

Pf. By construction of algorithm.

Center selection

Lemma. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Randomness in algorithms

Algorithmic design patterns.

Greedy.
Divide-and-conquer.
Dynamic programming.
Network flow.
Randomization.
In practice, access to a pseudo-random number generator
Randomization. Allow fair coin flip in unit time.
Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Contention resolution

May 29, 2014 CS38 Lecture 18 24

Contention resolution in a distributed system

Contention resolution. Given n processes $P_1, ..., P_n$ each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database attime t. Then $1/(e \cdot n) \le \Pr[S(i, t)] \le 1/(2n)$.

Pf. By independence, $Pr[S(i, t)] = p(1 - p)^{n-1}$.

process i requests access none of remaining n-1 processes request access

• Setting p = 1/n, we have $Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$. •

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:

- $(1 1/n)^n$ converges monotonically from 1/4 up to 1 / e.
- $(1 1/n)^{n-1}$ converges monotonically from 1/2 down to 1 / e.

Contention Resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1 / e. After $e \cdot n$ ($c \ln n$) rounds, the probability $\leq n^{-c}$.

Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $Pr[F[i, t]] \le (1 - 1/(en))^t$.

• Choose $t = [e \cdot n]$:

$$\Pr[F(i,t)] \le (1-\frac{1}{en})^{[en]} \le (1-\frac{1}{en})^{en} \le \frac{1}{e}$$

• Choose
$$t = [e \cdot n][c \ln n]$$
: $\Pr[F(i,t)] \le \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is $\ge 1 - 1/n$.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]] \leq n\left(1 - \frac{1}{\epsilon n}\right)^{t}$$

• Choosing $t = 2 \lceil en / \lceil c \ln n \rceil$ yields $\Pr[F[t]] \le n \cdot n^2 = 1/n$.

Union bound. Given events $E_1, ..., E_n$, $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$

Global min cut

May 29, 2014

CS38 Lecture 18

29

Global minimum cut

Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- ullet Pick some vertex s and compute min s- v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of \emph{u} and \emph{v} to \emph{w}
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_1
- Return the cut (all nodes that were contracted to form v_1).

contract u-v

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
- replace \boldsymbol{u} and \boldsymbol{v} by single new super-node \boldsymbol{w}
- preserve edges, updating endpoints of \boldsymbol{u} and \boldsymbol{v} to \boldsymbol{w}
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v₁ and v₁
- ullet Return the cut (all nodes that were contracted to form v_1).

Reference: Thore Husfeld

32

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

- Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^* .
- Let $k = |F^*| = \text{size of min cut}$.
- In first step, algorithm contracts an edge in F* probability k/|E|.
- Every node has degree ≥ k since otherwise (A*, B*) would not be a min-cut ® | E| ≥ ½ k n.
- * Thus, algorithm contracts an edge in F* with probability $\leq 2 / n$.

33

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F' be edges with one endpoint in A* and the other in B*.
- Let $k = |F^*| = \text{size of min cut}$.
- Let G' be graph after j iterations. There are n' = n j supernodes.
- * Suppose no edge in F^* has been contracted. The min-cut in G^* is still k.
- Since value of min-cut is k, $|E| \ge \frac{1}{2} k n^{k}$.
- * Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n'$.
- Let E_j = event that an edge in F^* is not contracted in iteration j.

 $\Pr[E_{_{1}} \cap E_{_{2}} \; \bot \; \cap E_{_{n-2}} \;] \;\; = \;\; \Pr[E_{_{1}}] \; \times \; \Pr[E_{_{2}} \; | \; E_{_{1}}] \; \times \; \bot \; \times \; \Pr[E_{_{n-2}} \; | \; E_{_{1}} \cap E_{_{2}} \; \bot \; \cap \; E_{_{n-3}}]$

- $\geq (1-\frac{2}{n})(1-\frac{2}{n-1}) \sqcup (1-\frac{2}{4})(1-\frac{2}{3})$
- = $\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)$ L $\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$
- = $\frac{2}{n(n-1)}$
- ≥ 2/n²

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

with independent random choices,

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{n^2}}\right]^{2 \ln n} \le \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}$$

..

Contraction algorithm: example execution

trial 1

Trial 2

Trial 3

Trial 4

Trial 5

(finds min cut)

6

Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2\log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] O(n² log³ n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

faster than best known max flow algorithm or deterministic global min cut algorithm

37