5/29/2014

CS38
Introduction to Algorithms

Lecture 18
May 29, 2014

May 29, 2014 CS38 Lecture 18

Outline

« coping with intractibility
— approximation algorithms
» set cover
+ TSP
+ center selection

« randomness in algorithms

May 29, 2014 CS38 Lecture 18

Optimization Problems

* many hard problems (especially NP-hard)
are optimization problems

—e.g. find shortest TSP tour
—e.g. find smallest vertex cover
—e.g. find largest clique

— may be minimization or maximization problem
—“OPT” = value of optimal solution

May 29, 2014 CS38 Lecture 18

Approximation Algorithms

+ often happy with approximately optimal
solution

—warning: lots of heuristics

—we want approximation algorithm with
guaranteed approximation ratio of r
— meaning: on every input X, output is
guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization

May 29, 2014 CS38 Lecture 18

Set Cover

* Givensubsets S,, S,, ..., S, of a universe
U of size m, and an integer k
—is there a cover J of size k
—“cover” U;;S;=U

Theorem: set-cover is NP-complete
—in NP (why?)
—reduce from vertex cover (how?)

May 29, 2014 CS38 Lecture 18

Set cover

* Greedy approximation algorithm:

— at each step, pick set covering largest number
of remaining uncovered items

Theorem: greedy set cover algorithm
achieves an approximation ratio of (Inm + 1)

May 29, 2014 CS38 Lecture 18

5/29/2014

Set cover

Theorem: greedy set cover algorithm
achieves an approximation ratio of (In m + 1)
Proof:

— let r, be # of items remaining after iteration i

—rp=[U=m

—Claim: r; < (1 - 1/OPT)r,4

« proof: OPT sets cover all remaining items so some
set covers at least 1/OPT fraction

May 29, 2014 CS38 Lecture 18 7

Set cover

Theorem: greedy set cover algorithm
achieves an approximation ratio of (In m + 1)

Proof:
1-1/x)* < 1/
— Claim: rig(l—l/olapyl_l/

—sor < (1-1/OPT)'m
— after OPT:In m + 1 iterations, # remaining
elements is at most m/(2m) < %

— so must have covered all m elements.

May 29, 2014 CS38 Lecture 18 8

Travelling Salesperson Problem

+ given a complete graph and edge weights

satisfying the triangle inequality

W, p + Wy e > W, for all vertices a,b,c

—find a shortest tour that visits every vertex
Theorem: TSP with triangle inequality is
NP-complete

—in NP (why?)

— reduce from Hamilton cycle (how?)

May 29, 2014 CS38 Lecture 18 9

TSP approximation algorithm

+ two key observations:

— tour that visits vertices more than once can be
short-circuited without increasing cost, by
triangle inequality

« short-circuit = skip already-visited vertices

— (multi-)graph with all even degrees has
Eulerian tour: a tour that uses all edges
* proof?

May 29, 2014 CS38 Lecture 18 10

TSP approximation algorithm

* First approximation algorithm:
—find a Minimum Spanning Tree T
—double all the edges
— output an Euler tour (with short-circuiting)

Theorem: this approximation algorithm
achieves approximation ratio 2

May 29, 2014 CS38 Lecture 18 11

TSP approximation algorithm

Theorem: this approximation algorithm
achieves approximation ratio 2

Proof:
—optimal tour includes a MST, so wi(T) < OPT
— tour we output has weight at most 2-wt(T)

May 29, 2014 CS38 Lecture 18 12

5/29/2014

Christofide’s algorithm

» Second approximation algorithm:
—find a Minimum Spanning Tree T
—even number of odd-degree vertices (why?)
—find a min-weight matching M on these
— output an Euler tour on M U T (with short-
circuiting)
Theorem: this approximation algorithm
achieves approximation ratio 1.5

May 29, 2014 CS38 Lecture 18 13

Christofide’s algorithm

Theorem: this approximation algorithm
achieves approximation ratio 1.5
Proof:

— as before OPT > wt(T)

— let R be opt. tour on odd deg. vertices W only

— even/odd edges of R both constitute perfect
matchings on W

— thus wt(M) < wt(R)/2 < OPT/2
— total: wt(M) + wt(T) < 1.5-OPT

May 29, 2014 CS38 Lecture 18 14

Center selection problem

Input. Set of n sites sy, ..., s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance r(C) from a site to nearest center is minimized.

k= 4 centers

(]

® center

B ite

Center selection problem

Input. Set of n sites sy, ..., s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance r(C) from a site to nearest center is minimized.

Notation.
* dist(x, y) = distance between sites x and y.
* dist(s;, C) = min . ¢ dist(s;, ¢) = distance from s; to closest center.
* 1(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C|=k.

Distance function properties.
* dist(x, x) =0 [identity]
* dist(x, y) = dist(y, x) [symmetry]
* dist(x, y) < dist(x, 2) + dist(z, y) [triangle inequality]

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane,
dist(x, y) = Euclidean distance.

Remark: search can be infinite!

k=4 centers

()

center
site

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a
single center, and then keep adding centers so as to reduce the covering
radius each time by as much as possible.

Remark: arbitrarily bad!

k = 2 centers

greedy center 1

center

site.

5/29/2014

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION (K, N, S1, Sz, ..., Sn)
C—0.
REPEAT k times
Select a site si with maximum distance dist(si, C).
CeCus |

RETURN C. site farthest
from any center

Property. Upon termination, all centers in C are pairwise at least r(C) apart.

Center selection: analysis of greedy algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Pf. [by contradiction] Assume r(C*) <%r(C).
* For each site c; € C, consider ball of radius % r(C) around it.
* Exactly one ¢/’ in each ball; let ¢; be the site paired with ¢;".
Consider any site s and its closest center ¢ € C*.
* dist(s, C) < dist(s, ¢;) < dist(s, ¢i*) + dist(ci*, ¢)) < 2r(C*).
* Thus, 1(C) < 2r(C*).| - N/

8 r(C*) since ¢* is closest center

A-inequality

° .
Pf. By construction of algorithm. [
19 20
Center selection
Lemma. Let C* be an optimal set of centers. Then r(C) < 2r (C*).
Theorem. Greedy algorithm is a 2-approximation for center selection
problem.
Remark. Greedy algorithm always places centers at sites, but is still within a Random neSS
factor of 2 of best solution that is allowed to place centers anywhere. . I th
e.g., points in the plane
Question. |s there hope of a 3/2-approximation? 4/3?
May 29, 2014 CS38 Lecture 18 22
21

Randomization
Algorithmic design patterns.

* Greedy.

* Divide-and-conquer.

* Dynamic programming.

* Network flow. .

* Randomization. Contentlon

in practice, access to a pseudo-random number generator
Randomization. Allow fair coin flip in unit time. reS()lUtlon
Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.
Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.
May 29, 2014 CS38 Lecture 18 24

5/29/2014

Contention resolution in a distributed system

Contention resolution. Given n processes Py, ..., P,, each competing for
access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P,\

P ——

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with
probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at
time t. Then 1/(e-n) < Pr[S(i, t)] < 1/(2n).

Pf. By independence, Pr[S(i,t)]= p(1-p)"-L
/ N\
process i requests access none of remaining n-1 processes request access
* Setting p = 1/n, we have Pr[S(i, t)] = 1/n(1-1/n)"-1 =«
\
value that maximizes Pr{S(i, t)] between 1/e and 1/2
Useful facts from calculus. As n increases from 2, the function:

* (1-1/n)" converges monotonically from 1/4 upto 1/e.
* (1-1/n)"-1 converges monotonically from 1/2 down to 1/e.

Py
25 26
Contention Resolution: randomized protocol Contention Resolution: randomized protocol
Claim. The probability that process i fails to access the database in Claim. The probability that all processes succeed within 2e - n In n rounds
en rounds is at most 1/ e. After e - n (c In n) rounds, the probability <n-. isz21-1/n.
Pf. Let F[i, f] = event that process i fails to access database in rounds 1 Pf. Let F[t] = event that at least one of the n processes fails to access
through t. By independence and previous claim, we have database in any of the rounds 1 through t.
PriFli,] < (1-1/(en)t. .
n
P FIA] = P OFlit]| = 3 PFLA] = n(1-1)
=1 i
* Choose t=[e-nl: PrlF(i.0)] = (17;‘)IEM s(1-2)" =t ! - |
union bound previous slide
* Choose t=le-nllcinnl: PHF(G,1)] < (1)clnn - n
‘ * Choosing t=2 [encinnl yields PrlF[tl<n-n2=1/n. =
Union bound. Given events E, ..., E,,
27 28
Global minimum cut
Global min cut. Given a connected, undirected graph G = (V, E),
find a cut (A, B) of minimum cardinality.
Applications. Partitioning items in a database, identify clusters of related
G|Oba| documents, network reliability, network design, circuit design, TSP solvers.
. Network flow solution.
m | n CUt * Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
* Pick some vertex s and compute min s- v cut separating s from each
other vertex v e V.
False intuition. Global min-cut is harder than min s-t cut.
May 29, 2014 Cs38 Lecture 18 29

5/29/2014

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
* Repeat until graph has just two nodes v; and vy’
* Return the cut (all nodes that were contracted to form v;).

| . N/

AN \
b - <
:

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
* Repeat until graph has just two nodes v; and vy’
* Return the cut (all nodes that were contracted to form v;).

f /"
o Reference: Thore Husfeldt P

Contraction algorithm Contraction algorithm
Claim. The contraction algorithm returns a min cut with prob 2 2/n% Claim. The contraction algorithm returns a min cut with prob = 2/n2.
Pf. Consider a global min-cut (A*, B*) of G. Pf. Consider a global min-cut (A*, B*) of G.

* Let F* be edges with one endpoint in A* and the other in B*. * Let F* be edges with one endpoint in A* and the other in B*.

* Letk = |F*| = size of min cut. * Letk = |F*| = size of min cut.

* In first step, algorithm contracts an edge in F* probability k /| E|. * Let G' be graph after j iterations. There are n' = n —j supernodes.

* Every node has degree 2k since otherwise (A*, B¥) would not be * Suppose no edge in F* has been contracted. The min-cut in G' is still k.

amin-cut ® |E|2%kn. * Since value of min-cut is k, |E'| 2 %2kn'.
* Thus, algorithm contracts an edge in F* with probability < 2/n. * Thus, algorithm contracts an edge in F* with probability < 2/n".
* Let Ej = event that an edge in F* is not contracted in iteration j.
. B*
A PrlE, NE,L NE,,] = Pr[E]x Pr[E, |E] x L x Pr[E, , IENEL NE,]
——_
= (1-)-H)L 1-9(-3)
-2 -3
(=G)@
P o=}
2 2
33 n* 34

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.
with .7ependem random choices,

Claim. If we repeat the contraction algorithm n? In n times,
then the probability of failing to find the global min-cutis <1/n2

Pf. By independence, the probability of failure is at most

12 2n "
b _1\2inn
s () - 2
|
A-1/x<<1/e

Contraction algorithm: example execution

S N L M 28 D D o Beoa A g

trial 1 _._.:-:/.. AR IRTRrRriRry .,*.,] e T W
R N T L

o FEKEOOIFSBddrrs

e oee e e WY

(o] ¥ j P r
o B AN &
tril 3 A-\o-\ob‘oo‘c.,..‘"’i.’.f&!:ﬁfrl
PR S RS IR g =

SRDUYYEEECL N

trial 4

PRRAEAARMDN o
trial 5 5
(finds min cut) ate

-
trial 6 s ota

Reference: Thore Husfeld
36

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Global min cut: context

Remark. Overall running time is slow since we perform ©(n2log n) iterations
and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n? log®n).
* Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/ 2 nodes remain.
* Run contraction algorithm until n/v2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log®n).
\

faster than best known max flow algorithm or
deterministic global min cut algorithm

5/29/2014

