
CS 21 Decidability and Tractability Winter 2024

Solution Set 7

Posted: March 6

If you have not yet turned in PS7, you should not consult these solutions.

1. To see that the language is in NP, we simply note that a witness for an n-symbol input y is
the unique n-symbol string x for which f(x) = y. To verify that y ∈ L given this witness, we
check that f(x) = y (poly-time computable), and that g(x) = 1 (also poly-time computable).

To see that the language is in coNP, we give a witness non-membership in L. For an n-symbol
input y, the witness is the unique n-symbol string x for which f(x) = y. To verify that y 6∈ L
given this witness, we check that f(x) = y (poly-time computable), and that g(x) = 0 (also
poly-time computable).

2. (a) deadlock is in NP because given a state v = (v1, . . . , vn) that is a purported dead-
lock state, we can check in polynomial time that for all i, j pairs, there is no pair
((vi, v

′
i), (vj , v

′
j)) in the list P (there are n2 pairs of i, j to check, and for each we need

to traverse the list P).

To prove that deadlock is NP-hard, we reduce from 3-SAT. Given an 3-CNF formula
φ with n variables and m clauses, we produce m directed graphs G1, . . . , Gm. Each
Gi = (Vi, Ei) is a directed cycle on 3 vertices; the vertices are labelled with the literals
appearing in clause i. Our list P consists of all pairs of edges (ei = (vi, v

′
i), ej = (vj , v

′
j))

with ei ∈ Ei and ej ∈ Ej for which the literals labelling vi and vj are negations of each
other. Now, suppose we started with a satisfiable 3-CNF formula, and fix a satisfying
assignment. Then the state v = (v1, v2, . . . , vm) in which each vi is labelled with a
true literal in that satisfying assignment is a deadlock state. In the other direction, if
v = (v1, v2, . . . , vm) is a deadlock state, then the literals labelling the vertices v1, . . . , vm
must be consistent (meaning that no two of these literals are negations of each other),
because otherwise, there is an available transition, and so v could not have been a
deadlock state. But then the assignment that sets the literals labelling v1, v2, . . . , vm to
TRUE is a satisfying assignment to the original 3-CNF.

(b) We give a generic reduction from a language L in PSPACE. Fix such a language, and
let M be the Turing machine that decides L using at most nk space. We first modify
M to prevent it from attempting to move off the beginning tape. At the beginning of
its computation, we have M place a special marker at the beginning of its n-bit input
(shifting the input to the right by 1). Any move by M onto this special marker is now
followed by a move back to the right (onto the first “real” tape square); this prevents
moves off the left of the tape. Second, we modify M so that if it is about to reject,
it instead enters an infinite loop. So, the modified machine simulates M , never moves
outside the first nk + 1 tape squares (counting the special marker), it halts if its input x
is in L (the simulation eventually accepts), and it enters an infinite loop if x is not in L

7-1

7-2

Our reduction is given an instance of L, the n-bit string x. Define Γ = Σ ∪ (Σ × Q).
These are the symbols that appear in a tableau of M ’s computation on x (as we used in
the reduction showing that circuit-sat was NP-complete). Let m = nk + 1, and define
the graphs G1, G2, . . . , Gm to each be the complete directed graph in |Γ| vertices. We
identify the vertices of each Gi with Γ. Now we produce the list P consisting of all pairs
((vi, v

′
i), (vi+1, v

′
i+1)) for vi, v

′
i ∈ Vi and vi+1, v

′
i+1 ∈ Vi+1 for which

• vi, v
′
i+1 ∈ (Σ×Q) and vi+1, v

′
i ∈ Σ, or

• v′i, vi+1 ∈ (Σ×Q) and v′i+1, vi ∈ Σ,

and adjacent cells vi, vi+1 in one row of the tableau become v′i, v
′
i+1 in the next row of

the tableau, according to M ’s transition function.

If we take v = (v1, . . . , vm) to be the sequence in Γm corresponding to the first row of the
tableau (of M with input x, padded with blanks), then there is exactly one reachable
state (since M is deterministic), which corresponds to the second row of the tableau.
From that state, there is exactly one reachable state corresponding to the third row of
the tableau, and so on. Thus if M eventually accepts, there will be a deadlock state
(since M halts upon accepting, and there are no further rows of the tableau from that
point). The other alternative (recall our initial modification to M) is for M to loop
forever; consequently we will never reach a deadlock state.

This completes our reduction from a generic language L in PSPACE to reachable
deadlock.

3. We want to compute f(g(x)) in logspace. We cannot compute g(x) and then evaluate f on it,
because we don’t have enough storage space to write-down the intermediate result g(x), which
may be polynomially long in the input length |x|. Note that g(x) can only be polynomially
long in |x| (not more), because it is produced by a logspace machine, which therefore has
only polynomially many configurations. It does not loop, so it can only run for polynomially
many steps before halting.

Let Mf and Mg be Turing Machines that compute f and g in logspace, respectively. We
build a new Turing Machine that simulates Mf , and whenever Mf would have read the i-th
bit of its input, we pause (remembering Mf ’s state in O(log |x|) bits), and simulate Mg on
input x (ignoring what it would have written on its output tape, and remembering only the
position of the head on the output tape) but keeping track of what it writes in the i-th bit of
g(x). After this simulation of Mg completes, we have the necessary bit to continue simulating
Mf . At every point in this simulation we need only remember the state of one of the two
machines (requiring space O(log |x|)), while running the other, so the total space is O(log |x|)
as desired.

