
CS 21 Decidability and Tractability Winter 2024

Midterm Solutions

Out: February 7

If you have not yet turned in the Midterm
you should not consult these solutions.

0-1

0-2

1. (a) The language L1 is not context-free.

To see it is not context-free, we use the CFL pumping lemma: let w = apbpcpdp, and
consider the ways w can be written as w = uvxyz. If u or v straddles the boundary
between characters, then pumping results in an out-of-order string (not in the language).
Otherwise, we use the fact that |vxy| ≤ p to argue that v and y can only be within a
single block or two adjacent blocks of characters. In all such cases, pumping on v and y
results in a string not in the language. We conclude that L1 is not context free.

(b) The language L2 is context-free but not regular. To see it is context free, consider the
NPDA that first pushes a’s onto the stack until it sees the first b, then pushes b’s onto
the stack until it sees the first c, then pops b’s from the stack as it reads c’s, and finally
pops a’s from the stack as it reads d’s. To see that it is not regular, we use the pumping
lemma. Let w = apbpcpdp and consider the ways w can be written as xyz. If string y
straddles the boundary between characters, then pumping on y results in an out-of-order
string (not in the language). Otherwise pumping on y increases the number of only a
single character type, again resulting in a string not in the language. We conclude that
L2 is not regular.

(c) The language L3 is regular: it is the union of the regular languages a1000a∗b∗c∗ and the
finite (and hence regular) language {anbncn : n < 1000}.

2. (a) Decidable. We will reduce this problem to ECFG (emptiness of context-free-grammars),
which we saw in lecture was decidable. Given E we first build the DFA that recognizes
language A, the complement of L(E). This is possible because regular languages are
closed under complement. We also know how to construct a NPDA that recognizes the
language B = L(G) ∩ A (from the hint: Sipser problem 2.18). We now check if B is
empty. From lecture we know that emptiness of CFGs is decidable. Moreover the com-
plementation step and the intersection step are all computable transformations. Finally,
note that B is empty iff L(G) ⊆ L(E), so the language CFG-IN-REG is decidable.

(b) Undecidable. We reduce ALLCFG to REG-IN-CFG. Set E = Σ∗. Given an instance
G of ALLCFG, we produce the pair (E,G). If G = Σ∗ then clearly L(E) ⊆ L(G); if
G 6= Σ∗ then L(E) 6⊆ L(G). Therefore we have reduced ALLCFG to REG-IN-CFG, and
we know from lecture that ALLCFG is undecidable.

3. Suppose there exists a decidable language D such that L1 ∩ D = ∅ and L2 ⊆ D, with a
corresponding TM MD. Then considering MD(〈MD〉) we come to a contradiction as follows.

Suppose MD(〈MD〉) accepts; i.e. 〈MD〉 is in the language D. Then by the definition of L1,
〈MD〉 is in the language L1, which contradicts the fact that L1 ∩D = ∅.
Suppose MD(〈MD〉) rejects; i.e. 〈MD〉 is not in the language D. Then by the definition of
L2, 〈MD〉 is in the language L2, which contradicts the fact that L2 ⊆ D.

4. (a) Let G be a right-linear CFG. We will construct a NFA M recognizing L(G). Our machine
M will have a single state for each non-terminal in the grammar, a distinguished “accept”
state, and other states. The start state of M is the state corresponding to the start
symbol in the grammar. For each transition of the form:

A→ x1x2 . . . xnB

0-3

we add n − 1 states s1, s2, . . . , sn−1 “linking” A to B, with a transition from A to s1
labelled x1, a transition from s1 to s2 labelled x2, etc..., and a transition from sn−1 to
B labelled xn.

For each transition of the form:

A→ x1x2 . . . xn

we add n − 1 states s1, s2, . . . , sn−1 “linking” A to the accept state, with a transition
from A to s1 labelled x1, a transition from s1 to s2 labelled x2, etc..., and a transition
from sn−1 to the accept state labelled xn.

Now, if M accepts a string w, then the sequence of “non-terminal” states it traverses to
reach the accept state dictates a derivation of w in the grammar. In the other direction,
if w has a derivation in the grammar, then it must arise from applying a sequence of
rules of the first type, followed by a single application of a rule of the second type. This
derivation dictates a path from the start state of M to the accept state, and thus M
accepts w.

(b) Given a FA M , we construct a right-linear CFG G as follows. The non-terminals of G
are exactly the states of M . The start symbol of G is the start state of M . For each
transition in M from state A to state B, labelled with the symbol x, we add the following
rule: A→ xB. For each transition from state A to an accept state B, labelled with the
symbol x, add the following rule: A→ x.

If M accepts a string w, then the sequence of states traversed from the start state to an
accept state dictates a derivation of w in the grammar. In the other direction, if w has
a derivation in the grammar, then this derivation dictates a path from the start state of
M to an accept state (since it must end with a rule of the second type).

(c) Consider the following linear CFG G:

S → 0A|1B|0|1|ε
A → S0

B → S1

We prove two claims to establish that this indeed generates exactly the palindrome
language L. First, we claim that L ⊆ L(G). Let w be a palindrome. Since w is a
palindrome, it has the form w = xxR or w = x0xR or w = x1xR, where xR denotes the
reverse of string x (the latter two cases are when w is of odd length). We prove that
each of these three types of strings are in L(G), by induction on |x|. If |x| = 0 then
x = ε and w is either ε, 0, or 1, and indeed S derives w. Now assume by induction that
for all x′ with length < n, the strings x′(x′)R, x′0(x′)R, x′1(x′)R are in L(G). Then we
can derive w as follows: if the first character of x is 0, then we use one of the derivations
(for the three different forms for w)

S ⇒ 0A⇒ 0S0⇒∗ 0x′(x′)R0 = xxR

S ⇒ 0A⇒ 0S0⇒∗ 0x′0(x′)R0 = x0xR

S ⇒ 0A⇒ 0S0⇒∗ 0x′1(x′)R0 = x1xR

0-4

similarly, if the first character of x is 1, then we use one of the derivations (for the three
different forms for w)

S ⇒ 1B ⇒ 1S1⇒∗ 1x′(x′)R1 = xxR

S ⇒ 1B ⇒ 1S1⇒∗ 1x′0(x′)R1 = x0xR

S ⇒ 1B ⇒ 1S1⇒∗ 1x′1(x′)R1 = x1xR

In all of the above, the “⇒∗” follows by induction.

Second, we claim that L(G) ⊆ L. Consider a derivation of some string w. The proof is
by induction on the length of the derivation. If the length is 1, then the only string w
could be is ε, 0, or 1 and all of these strings are in L. Otherwise, assume all derivations
of length < n result in strings in L and consider the first step in a length n derivation. If
it is S → 0A, then the only rule that can be applied next is A→ S0, so we deduce that
the derivation has the form S ⇒ 0A⇒ 0S0⇒∗ 0w′0 = w. Now since S ⇒∗ w′ in fewer
than n steps, we know that w′ is a palindrome, and thus w = 0w′0 is as well. Otherwise,
the first step in the derivation is S → 1B, then the only rule that can be applied next is
B → S1, so we deduce that the derivation has the form S ⇒ 1B ⇒ 1S1 ⇒∗ 1w′1 = w.
Now since S ⇒∗ w′ in fewer than n steps, we know that w′ is a palindrome, and thus
w = 1w′1 is as well. We conclude that w ∈ L and then that L(G) ⊆ L.

5. Let M be a recognizer for L. We are given an input #x1#x2# · · ·#xk# for some k ≥ 0. We
simulate M on each xi in parallel, and accept as soon as “three in a row” of these simulations
accept. Specifically, we do the following for j = 1, 2, 3, . . .: simulate M on each xi for j steps,
and if “three in a row” of the simulations halt and accept, then we halt and accept.

Now, it is clear that if for some i, all of xi, xi+1, xi+2 are in L, then for some j (corresponding
to the maximum number of steps for M to accept each of xi, xi+1, xi+2) the new machine
will accept. Otherwise, we will never experience accepts for “three in a row” of the xi and
the machine will not accept.

