
CS 21 Decidability and Tractability Winter 2024

Problem Set 2

Out: January 17 Due: January 24

Reminder: you are encouraged to work in groups of two or three; however you must turn in your own
write-up and note with whom you worked. You may consult the course notes and the text (Sipser).
The full honor code guidelines and collaboration policy can be found in the course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. For a positive integer i, let N(i) denote its decimal representation (the usual string we write
when writing the number i, with no leading zeros). Let N ′(i) denote the string N(i) written
in reverse order (least-significant digit first). Show that the language

L = {N(i)#N ′(i+ 2) : i ≥ 1}

over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,#} is recognizable by a pushdown automata.

2. Give a simple description of the language generated by the following context-free grammar:

S → aSb|bSa|SS|ε

and prove that it does in fact generate that language. Once you know the language, the
following hint may help with the proof: Let x be a string in the language. Prove that the
shortest (non-empty) prefix of x that is also in the language cannot begin and end with the
same symbol.

3. Show that CFLs are not closed under intersection. To do this you should come up with two
CFLs A and B with the property that C = A ∩ B = {x : x ∈ A and x ∈ B} is not a CFL.
State the languages you are using and then:

(a) Prove that A and B are CFLs.

(b) Prove that C = A ∩B is not a CFL.

4. Ogden’s Lemma and non-context-free languages.

(a) Consider the language L = {aibjckd` : i = 0 or j = k = `}. Prove that L satisfies the
conditions of the CFL Pumping Lemma. In other words, the CFL Pumping Lemma is
incapable of proving that L is not a CFL (since we cannot derive a contradiction from
the assumption that L is a CFL).

(b) The following is a strengthening of the CFL Pumping Lemma:

Lemma 2.1 (Ogden’s Lemma) If L is a CFL, then there exists a pumping length p
such that for every w ∈ L of length at least p and every way of “marking” p or more
positions in w, w can be written w = uvxyz such that:
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• for all i ≥ 0, uvixyiz ∈ L, and
• vy contains at least 1 marked position of w, and

• vxy contains at most p marked positions of w.

Prove Ogden’s Lemma. Hint: assume L is given by a CFG in Chomsky Normal Form,
and consider a parse tree for w in this grammar. Pick a path from the root to a
marked descendant by always travelling to the child with the greater number of marked
descendants, and find a repeated nonterminal on that path. It may be useful in the
course of the proof to single out “branch nodes,” which are internal nodes whose left
and right children both have marked descendants.

(c) Use Ogden’s Lemma to prove that the language L from part (a) is not a CFL.

5. Show that CFL’s are not closed under complement. (The complement of a language L ⊆ Σ∗

is L = Σ∗ − L.)


