CS 21 Decidability and Tractability

Winter 2024

Midterm

Out: January 31
Due: February 7

This is a midterm. You may consult only the course notes and the text (Sipser). You may not collaborate. The full honor code guidelines can be found in the course syllabus.

There are 5 problems on 2 pages. Please attempt all problems. Please turn in your solutions via Gradescope, by 1 pm on the due date. Good luck!

1. Identify each of the following languages as either (i) regular, (ii) context-free but not regular, or (iii) not context-free. For each language, prove that your classification is correct, using the techniques we have developed in this course.
(a) $L_{1}=\left\{a^{i} b^{j} c^{i} d^{j}: i, j \geq 0\right\}$.
(b) $L_{2}=\left\{a^{i} b^{j} c^{j} d^{i}: i, j \geq 0\right\}$.
(c) $L_{3}=\left\{a^{i} b^{j} c^{k}: i=j=k\right.$ or $\left.i>1000\right\}$.
2. Identify each of the following languages as either decidable or undecidable, and prove that your classification is correct, using the techniques we have developed in this course. Recall that for a context free grammar G, we denote by $L(G)$ the language it describes, and similarly for a regular expression E, we denote by $L(E)$ the language it describes.
(a) CFL-IN-REG $=\{(G, E): G$ is a CFG, E is a regular expression, and $L(G) \subseteq L(E)\}$
(b) REG-IN-CFL $=\{(E, G): G$ is a CFG, E is a regular expression, and $L(E) \subseteq L(G)\}$

Hint: you may wish to use the fact that the intersection of a context free language and a regular language is context-free (Sipser problem 2.18).
3. Two (disjoint) languages L_{1} and L_{2} are called recursively separable if there is a decidable language D for which $L_{1} \cap D=\emptyset$ and $L_{2} \subseteq D$; they are recursively inseparable if no such decidable language D exists. Convince yourself that an undecidable language and its complement are recursively inseparable.

Consider the following languages:

$$
\begin{aligned}
& L_{1}=\{\langle M\rangle: M \text { halts and accepts input }\langle M\rangle\} \\
& L_{2}=\{\langle M\rangle: M \text { halts and rejects input }\langle M\rangle\}
\end{aligned}
$$

Prove that L_{1} and L_{2} are recursively inseparable. Hint: your proof will probably involve supplying a Turing Machine its own description as input.
4. A right-linear CFG is a context-free grammar in which every production has the form

- $A \rightarrow x B$, or
- $A \rightarrow x$,
where A and B are non-terminals, and x can be any string of terminals. A CFG is linear if productions of the form $A \rightarrow B x$ are allowed in addition to the two types of productions in a right-linear CFG.
(a) Prove that every language generated by a right-linear CFG is regular.
(b) Prove that every regular language is generated by some right-linear CFG.
(c) Give a linear CFG that generates the non-regular language over the alphabet $\Sigma=\{a, b\}$,

$$
L=\{w: w \text { is a palindrome }\},
$$

and prove that your grammar indeed generates exactly L (i.e., prove that every string in L is generated by your grammar, and prove that every string generated by your grammar is in L).
5. Given a language L, define 3 -IN-A- ROW_{L} as follows:

$$
\begin{aligned}
3 \text {-IN-A-ROW } & =\{ \\
& \# x_{1} \# x_{2} \# \cdots \# x_{k} \#: k \geq 0 \\
& \text { and for some } \left.i, x_{i} \in L \text { and } x_{i+1} \in L \text { and } x_{i+2} \in L .\right\}
\end{aligned}
$$

Prove that 3 -IN-A-ROW ${ }_{L}$ is RE if L is RE. Here the x_{i} are strings over L 's alphabet, and \# is a symbol that is not in L's alphabet.

