
1

CS21
Decidability
and
Tractability

Lecture 8
January 22, 2024

1

January 22, 2024 CS21 Lecture 8 2

NPDA, CFG equivalence
Theorem: a language L is recognized by a

NPDA iff L is described by a CFG.

Must prove two directions:
(⇒) L is recognized by a NPDA implies L is

described by a CFG.
(⇐) L is described by a CFG implies L is

recognized by a NPDA.

2

January 22, 2024 CS21 Lecture 8 3

NPDA, CFG equivalence
Proof of (⇐): L is described by a CFG

implies L is recognized by a NPDA.
0 # 1

q1

0

:

1
A

$

0 # 1

q2

0

:

1
#

$

0 # 1

q3

0

:

1
#

$

A → 0A1
A → #

an
idea:

3

January 22, 2024 CS21 Lecture 8 4

NPDA, CFG equivalence
1. we’d like to non-deterministically guess the

derivation, forming it on the stack
2. then scan the input, popping matching

symbol off the stack at each step
3. accept if we get to the bottom of the stack at

the end of the input.

what is wrong with this approach?

4

January 22, 2024 CS21 Lecture 8 5

NPDA, CFG equivalence
– only have access to top of stack
– combine steps 1 and 2:

• allow to match stack terminals with tape during the
process of producing the derivation on the stack

0 # 1

q1

0

1
A

$

0 # 1

q2

1
A

$

0 # 1

q3

#

1

$

A → 0A1
A → #

5

January 22, 2024 CS21 Lecture 8 6

NPDA, CFG equivalence
• informal description of construction:

– place $ and start symbol S on the stack
– repeat:

• if the top of the stack is a non-terminal A, pick a
production with A on the lhs and substitute the rhs
for A on the stack

• if the top of the stack is a terminal b, read b from
the tape, and pop b from the stack.

• if the top of the stack is $, enter the accept state.

6

2

January 22, 2024 CS21 Lecture 8 7

NPDA, CFG equivalence

ε, ε → S$

ε, A → w

b, b → ε

one transition for
each production

A → w

one transition for
each terminal b

ε, A → w = w1w2…wk

shorthand for:

ε, A → wk

q r

q r

q1

q2 qk
…

ε, ε → wk-1

ε, ε → w1

ε, $ → ε

7

January 22, 2024 CS21 Lecture 8 8

NPDA, CFG equivalence
Proof of (⇒): L is recognized by a NPDA

implies L is described by a CFG.

– harder direction
– first step: convert NPDA into “normal form”:

• single accept state
• empties stack before accepting
• each transition either pushes or pops a symbol

8

January 22, 2024 CS21 Lecture 8 9

NPDA, CFG equivalence
– main idea: non-terminal Ap,q generates exactly

the strings that take the NPDA from state p (w/
empty stack) to state q (w/ empty stack)

– then Astart, accept generates all of the strings in
the language recognized by the NPDA.

9

January 22, 2024 CS21 Lecture 8 10

NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p qr

generated by Ap,r
generated by Ar,q

10

January 22, 2024 CS21 Lecture 8 11

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, q ∈Q, add the rule

Ap,q → Ap,rAr,q

11

January 22, 2024 CS21 Lecture 8 12

NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p q

r

generated by Ar,s

s
push d pop d

12

3

January 22, 2024 CS21 Lecture 8 13

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, s, q ∈ Q, d ∈ Γ and a, b ∈ (Σ ∪ {ε})
if (r, d) ∈ δ(p, a, ε), and

(q, ε) ∈ δ(s, b, d), add the rule
Ap,q → aAr,sb

from state p,
read a, push d,
move to state r

from state s,
read b, pop d,

move to state q

13

January 22, 2024 CS21 Lecture 8 14

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p ∈Q, add the rule

Ap,p → ε

14

January 22, 2024 CS21 Lecture 8 15

NPDA, CFG equivalence
• two claims to verify correctness:

1. if Ap,q generates string x, then x can take
NPDA P from state p (w/ empty stack) to
q (w/ empty stack)

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
Ap,q generates string x

15

January 22, 2024 CS21 Lecture 8 16

NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take

NPDA P from state p (w/ empty stack) to q
(w/ empty stack)
– induction on length of derivation of x.
– base case: 1 step derivation. must have only

terminals on rhs. In G, must be production of
form Ap,p → ε.

16

January 22, 2024 CS21 Lecture 8 17

NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take

NPDA P from state p (w/ empty stack) to q
(w/ empty stack)
– assume true for derivations of length at most

k, prove for length k+1.
– verify case: Ap,q → Ap,rAr,q →k x = yz

– verify case: Ap,q → aAr,sb →k x = ayb

17

January 22, 2024 CS21 Lecture 8 18

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– induction on # of steps in P’s computation
– base case: 0 steps. starts and ends at same

state p. only has time to read empty string ε.
– G contains Ap,p → ε.

18

4

January 22, 2024 CS21 Lecture 8 19

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– induction step. assume true for computations

of length at most k, prove for length k+1.
– if stack becomes empty sometime in the

middle of the computation (at state r)
• y is read going from state p to r (Ap,r→* y)
• z is read going from state r to q (Ar,q→* z)
• conclude: Ap,q → Ap,rAr,q →* yz = x

19

January 22, 2024 CS21 Lecture 8 20

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– if stack becomes empty only at beginning and

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x

20

January 22, 2024 CS21 Lecture 8 21

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– if stack becomes empty only at beginning and

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x

21

January 22, 2024 CS21 Lecture 8 22

Chomsky Normal Form
• Useful to deal only with CFGs in a simple

normal form
• Most common: Chomsky Normal Form (CNF)
• Definition: every production has form

A → BC or S → ε or
A → a

where A, B, C are any non-terminals (and
B, C are not S) and a is any terminal.

22

January 22, 2024 CS21 Lecture 8 23

Chomsky Normal Form
Theorem: Every CFL is generated by a

CFG in Chomsky Normal Form.

Proof: exercise or in book…

23

January 22, 2024 CS21 Lecture 8 24

Deciding CFLs
• Useful to have an efficient algorithm to

decide whether string x is in given CFL
– e.g. programming language often described

by CFG. Determine if string is valid program.
• If CFL recognized by deterministic PDA,

just simulate the PDA.
– but not all CFLs are (homework)…

• Can simulate NPDA, but this takes
exponential time in the worst case.

24

5

January 22, 2024 CS21 Lecture 8 25

Deciding CFLs
• Convert CFG into Chomsky Normal Form
• parse tree for string x generated by

nonterminal A:
A

B C

x

If A →k x (k > 1) then there must
be a way to split x:

x = yz

• A → BC is a production and

• B →i y and C ⇒j z for i, j < k

25

January 22, 2024 CS21 Lecture 8 26

Deciding CFLs
• An algorithm:

IsGenerated(x, A)
if |x| = 1, then return YES if A → x is a production,

else return NO
for all n-1 ways of splitting x = yz

for all ≤ m productions of form A → BC
if IsGenerated(y, B) and IsGenerated(z, C),

return YES
return NO

• worst case running time?

26

