
1

CS21
Decidability
and
Tractability

Lecture 7
January 19, 2024

1

January 19, 2024 CS21 Lecture 7 2

CFG example
• Arithmetic expressions over {+,*,(,),a}

– (a + a) * a
– a * a + a + a + a + a

• A CFG generating this language:
<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a

2

January 19, 2024 CS21 Lecture 7 3

CFG example

• A derivation of the string: a+a*a
<expr> ⇒ <expr> * <expr>
⇒ <expr> + <expr> * <expr>
⇒ a + <expr> * <expr>
⇒ a + a * <expr>
⇒ a + a * a

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a

3

January 19, 2024 CS21 Lecture 7 4

Parse Trees
• Easier way to picture derivation: parse tree

• grammar encodes grouping information;
this is captured in the parse tree.

<expr>

<expr> <expr>

<expr> <expr>

*

+

a a

a

4

January 19, 2024 CS21 Lecture 7 5

CFGs and parse trees

• Is this a good grammar for arithmetic
expressions?
– can group wrong way (+ precedence over *)
– different grammar for same language can

force correct precedence/grouping

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a

5

January 19, 2024 CS21 Lecture 7 6

Some facts about CFLs
• CFLs are closed under

– union (proof?)
– concatenation (proof?)
– star (proof?)

• Every regular language is a CFL
– proof?

6

2

January 19, 2024 CS21 Lecture 7 7

NPDA, CFG equivalence
Theorem: a language L is recognized by a

NPDA iff L is described by a CFG.

Must prove two directions: (proof next lecture!)

(⇒) L is recognized by a NPDA implies L is
described by a CFG.

(⇐) L is described by a CFG implies L is
recognized by a NPDA.

7

January 19, 2024 CS21 Lecture 7 8

NPDA, CFG equivalence
Proof of (⇐): L is described by a CFG

implies L is recognized by a NPDA.
0 # 1

q1

0

:

1
A

$

0 # 1

q2

0

:

1
#

$

0 # 1

q3

0

:

1
#

$

A → 0A1
A → #

an
idea:

8

January 19, 2024 CS21 Lecture 7 9

NPDA, CFG equivalence
1. we’d like to non-deterministically guess the

derivation, forming it on the stack
2. then scan the input, popping matching

symbol off the stack at each step
3. accept if we get to the bottom of the stack at

the end of the input.

what is wrong with this approach?

9

January 19, 2024 CS21 Lecture 7 10

NPDA, CFG equivalence
– only have access to top of stack
– combine steps 1 and 2:

• allow to match stack terminals with tape during the
process of producing the derivation on the stack

0 # 1

q1

0

1
A

$

0 # 1

q2

1
A

$

0 # 1

q3

#

1

$

A → 0A1
A → #

10

January 19, 2024 CS21 Lecture 7 11

NPDA, CFG equivalence
• informal description of construction:

– place $ and start symbol S on the stack
– repeat:

• if the top of the stack is a non-terminal A, pick a
production with A on the lhs and substitute the rhs
for A on the stack

• if the top of the stack is a terminal b, read b from
the tape, and pop b from the stack.

• if the top of the stack is $, enter the accept state.

11

January 19, 2024 CS21 Lecture 7 12

NPDA, CFG equivalence

ε, ε → S$

ε, A → w

b, b → ε

one transition for
each production

A → w

one transition for
each terminal b

ε, A → w = w1w2…wk

shorthand for:

ε, A → wk

q r

q r

q1

q2 qk
…

ε, ε → wk-1

ε, ε → w1

ε, $ → ε

12

3

January 19, 2024 CS21 Lecture 7 13

NPDA, CFG equivalence
Proof of (⇒): L is recognized by a NPDA

implies L is described by a CFG.

– harder direction
– first step: convert NPDA into “normal form”:

• single accept state
• empties stack before accepting
• each transition either pushes or pops a symbol

13

January 19, 2024 CS21 Lecture 7 14

NPDA, CFG equivalence
– main idea: non-terminal Ap,q generates exactly

the strings that take the NPDA from state p (w/
empty stack) to state q (w/ empty stack)

– then Astart, accept generates all of the strings in
the language recognized by the NPDA.

14

January 19, 2024 CS21 Lecture 7 15

NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p qr

generated by Ap,r
generated by Ar,q

15

January 19, 2024 CS21 Lecture 7 16

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, q ∈Q, add the rule

Ap,q → Ap,rAr,q

16

January 19, 2024 CS21 Lecture 7 17

NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p q

r

generated by Ar,s

s
push d pop d

17

January 19, 2024 CS21 Lecture 7 18

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, s, q ∈ Q, d ∈ Γ and a, b ∈ (Σ ∪ {ε})
if (r, d) ∈ δ(p, a, ε), and

(q, ε) ∈ δ(s, b, d), add the rule
Ap,q → aAr,sb

from state p,
read a, push d,
move to state r

from state s,
read b, pop d,

move to state q

18

4

January 19, 2024 CS21 Lecture 7 19

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p ∈Q, add the rule

Ap,p → ε

19

January 19, 2024 CS21 Lecture 7 20

NPDA, CFG equivalence
• two claims to verify correctness:

1. if Ap,q generates string x, then x can take
NPDA P from state p (w/ empty stack) to
q (w/ empty stack)

2. if x can take NPDA P from state p (w/
empty stack) to q (w/ empty stack), then
Ap,q generates string x

20

January 19, 2024 CS21 Lecture 7 21

NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take

NPDA P from state p (w/ empty stack) to q
(w/ empty stack)
– induction on length of derivation of x.
– base case: 1 step derivation. must have only

terminals on rhs. In G, must be production of
form Ap,p → ε.

21

January 19, 2024 CS21 Lecture 7 22

NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take

NPDA P from state p (w/ empty stack) to q
(w/ empty stack)
– assume true for derivations of length at most

k, prove for length k+1.
– verify case: Ap,q → Ap,rAr,q →k x = yz

– verify case: Ap,q → aAr,sb →k x = ayb

22

January 19, 2024 CS21 Lecture 7 23

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– induction on # of steps in P’s computation
– base case: 0 steps. starts and ends at same

state p. only has time to read empty string ε.
– G contains Ap,p → ε.

23

January 19, 2024 CS21 Lecture 7 24

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– induction step. assume true for computations

of length at most k, prove for length k+1.
– if stack becomes empty sometime in the

middle of the computation (at state r)
• y is read going from state p to r (Ap,r→* y)
• z is read going from state r to q (Ar,q→* z)
• conclude: Ap,q → Ap,rAr,q →* yz = x

24

5

January 19, 2024 CS21 Lecture 7 25

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– if stack becomes empty only at beginning and

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x

25

January 19, 2024 CS21 Lecture 7 26

NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/

empty stack) to q (w/ empty stack), then
Ap,q generates string x
– if stack becomes empty only at beginning and

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x

26

January 19, 2024 CS21 Lecture 7 27

Pumping Lemma for CFLs
CFL Pumping Lemma: Let L be a CFL.

There exists an integer p (“pumping
length”) for which every w ∈ L with |w| ≥
p can be written as

w = uvxyz such that
1. for every i ≥ 0, uvixyiz ∈ L , and
2. |vy| > 0, and
3. |vxy| ≤ p.

27

January 19, 2024 CS21 Lecture 7 28

CFL Pumping Lemma Example
Theorem: the following language is not

context-free:
L = {anbncn : n ≥ 0}.

• Proof:
– let p be the pumping length for L
– choose w = apbpcp

w = aaaa…abbbb…bcccc…c
– w = uvxyz, with |vy| > 0 and |vxy| ≤ p.

28

January 19, 2024 CS21 Lecture 7 29

CFL Pumping Lemma Example
– possibilities:

w = aaaa…aaabbb…bbcccc…c

(if v, y each contain only one type of symbol,
then pumping on them produces a string not
in the language)

u v x y z

29

January 19, 2024 CS21 Lecture 7 30

CFL Pumping Lemma Example
– possibilities:

w = aaaa…abbbb…bccccc…c

(if v or y contain more than one type of symbol,
then pumping on them might produce a string
with equal numbers of a’s, b’s, and c’s – if vy
contains equal numbers of a’s, b’s, and c’s.
But they will be out of order.)

u v x y z

30

6

January 19, 2024 CS21 Lecture 7 31

CFL Pumping Lemma Example
Theorem: the following language is not

context-free:
L = {xx : x ∈ {0,1}*}.

• Proof:
– let p be the pumping length for L
– try w = 0p10p1
– can this be pumped?

31

January 19, 2024 CS21 Lecture 7 32

CFL Pumping Lemma Example
L = {xx : x ∈ {0,1}*}.

– try w = 02p12p02p12p

– w = uvxyz, with |vy| > 0 and |vxy| ≤ p.
– case: vxy in first half.

• then uv2xy2z = 0??...?1??...?
– case: vxy in second half.

• then uv2xy2z = ??...?0??...?1
– case: vxy straddles midpoint

• then uv0xy0z = uxz = 02p1i0j12p with i ≠ 2p or j ≠ 2p

32

January 19, 2024 CS21 Lecture 7 33

Pumping Lemma for CFLs
CFL Pumping Lemma: Let L be a CFL.

There exists an integer p (“pumping
length”) for which every w ∈ L with |w| ≥
p can be written as

w = uvxyz such that
1. for every i ≥ 0, uvixyiz ∈ L , and
2. |vy| > 0, and
3. |vxy| ≤ p.

33

January 19, 2024 CS21 Lecture 7 34

CFL Pumping Lemma
Proof: consider a parse tree for a very long

string w ∈ L:
S

A B C. . .

A D S. . . C S A A B. . .

A C

S S

A D D C

B A

B Aa

b

a a

b

b b

a b

b a
b b b

long path

some non-terminal must
repeat on long path

34

January 19, 2024 CS21 Lecture 7 35

CFL Pumping Lemma
• Schematic proof:

u v x y z

S

A

A u v y z

S

A

A

u v y z

S

A

A

v x y

A

35

January 19, 2024 CS21 Lecture 7 36

CFL Pumping Lemma
• Schematic proof:

u v x y z

S

A

A u z

S

A

u z

S

A

x

36

7

January 19, 2024 CS21 Lecture 7 37

CFL Pumping Lemma
– how large should pumping length p be?
– need to ensure other conditions:

|vy| > 0 |vxy| ≤ p

– b = max # symbols on rhs of any production
(assume b ≥ 2)

– if parse tree has height ≤ h, then string
generated has length ≤ bh (so length > bh

implies height > h)

37

January 19, 2024 CS21 Lecture 7 38

CFL Pumping Lemma
– let m be the # of nonterminals in the grammar
– to ensure path of length at least m+2, require

|w| ≥ p = bm+2

– since |w| > bm+1, any parse tree for w has
height > m+1

– let T be the smallest parse tree for w
– longest root-leaf path must consist of ≥ m+1

non-terminals and 1 terminal.

38

January 19, 2024 CS21 Lecture 7 39

CFL Pumping Lemma
– must be a repeated non-

terminal A on long path
– select a repetition among the

lowest m+1 non-terminals on
path.

– pictures show that for every i
≥ 0, uvixyiz ∈ L u v x y z

S

A

A

– is |vy| > 0 ?
• smallest parse tree T ensures

– is |vxy| ≤ p?
• red path has length ≤ m+2, so ≤ bm+2 = p leaves

39

