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CFG example
• Arithmetic expressions over {+,*,(,),a}

– (a + a) * a 
– a * a + a + a + a + a

• A CFG generating this language:
<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a
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CFG example

• A derivation of the string: a+a*a
<expr> ⇒ <expr> * <expr>  
⇒ <expr> + <expr> * <expr>
⇒ a + <expr> * <expr>
⇒ a + a * <expr>
⇒ a + a * a

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a
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Parse Trees
• Easier way to picture derivation: parse tree

• grammar encodes grouping information; 
this is captured in the parse tree. 

<expr>

<expr> <expr>

<expr> <expr>

*

+

a a

a
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CFGs and parse trees

• Is this a good grammar for arithmetic 
expressions?
– can group wrong way (+ precedence over *)
– different grammar for same language can 

force correct precedence/grouping

<expr> → <expr> * <expr>
<expr> → <expr> + <expr>
<expr> → (<expr>) | a
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Some facts about CFLs
• CFLs are closed under

– union (proof?)
– concatenation (proof?)
– star (proof?)

• Every regular language is a CFL
– proof?
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NPDA, CFG equivalence
Theorem: a language L is recognized by a 

NPDA iff L is described by a CFG.

Must prove two directions: (proof next lecture!)

(⇒) L is recognized by a NPDA implies L is 
described by a CFG.

(⇐) L is described by a CFG implies L is 
recognized by a NPDA.
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NPDA, CFG equivalence
Proof of (⇐): L is described by a CFG 

implies L is recognized by a NPDA.
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an 
idea:
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NPDA, CFG equivalence
1. we’d like to non-deterministically guess the 

derivation, forming it on the stack
2. then scan the input, popping matching 

symbol off the stack at each step
3. accept if we get to the bottom of the stack at 

the end of the input. 

what  is wrong with this approach?
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NPDA, CFG equivalence
– only have access to top of stack
– combine steps 1 and 2:

• allow to match stack terminals with tape during the 
process of producing the derivation on the stack
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NPDA, CFG equivalence
• informal description of construction:

– place $ and start symbol S on the stack
– repeat:

• if the top of the stack is a non-terminal A, pick a 
production with A on the lhs and substitute the rhs 
for A on the stack

• if the top of the stack is a terminal b, read b from 
the tape, and pop b from the stack.

• if the top of the stack is $, enter the accept state. 
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NPDA, CFG equivalence

ε, ε → S$

ε, A → w

b, b → ε

one transition for 
each production 

A → w

one transition for 
each terminal b

ε, A → w = w1w2…wk

shorthand for:

ε, A → wk

q r

q r

q1

q2 qk
…

ε, ε → wk-1

ε, ε → w1

ε, $ → ε
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NPDA, CFG equivalence
Proof of (⇒): L is recognized by a NPDA 

implies L is described by a CFG.

– harder direction
– first step: convert NPDA into “normal form”:

• single accept state
• empties stack before accepting
• each transition either pushes or pops a symbol
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NPDA, CFG equivalence
– main idea: non-terminal Ap,q generates exactly 

the strings that take the NPDA from state p (w/ 
empty stack) to state q (w/ empty stack)

– then Astart, accept generates all of the strings in 
the language recognized by the NPDA.
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NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack 
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p qr

generated by Ap,r
generated by Ar,q

15

January 19, 2024 CS21 Lecture 7 16

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, q ∈Q, add the rule

Ap,q → Ap,rAr,q

16

January 19, 2024 CS21 Lecture 7 17

NPDA, CFG equivalence
• Two possibilities to get from state p to q:

stack 
height

abcabbacacbacbacabacabbabbabaacabbbababaacaccaccccc
input

string taking NPDA from p to q

p q

r

generated by Ar,s

s
push d pop d
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NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p, r, s, q ∈ Q, d ∈ Γ and a, b ∈ (Σ ∪ {ε})
if  (r, d) ∈ δ(p, a, ε), and

(q, ε) ∈ δ(s, b, d), add the rule
Ap,q → aAr,sb

from state p, 
read a, push d, 
move to state r 

from state s, 
read b, pop d, 

move to state q

18



4

January 19, 2024 CS21 Lecture 7 19

NPDA, CFG equivalence
• NPDA P = (Q, Σ, Γ, δ, start, {accept})
• CFG G:

– non-terminals V = {Ap,q : p, q ∈ Q}
– start variable Astart, accept

– productions:
for every p ∈Q, add the rule

Ap,p → ε
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NPDA, CFG equivalence
• two claims to verify correctness:

1. if Ap,q generates string x, then x can take 
NPDA P from state p (w/ empty stack) to 
q (w/ empty stack)

2. if x can take NPDA P from state p (w/ 
empty stack) to q (w/ empty stack), then 
Ap,q generates string x
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NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take 

NPDA P from state p (w/ empty stack) to q 
(w/ empty stack)
– induction on length of derivation of x. 
– base case: 1 step derivation. must have only 

terminals on rhs. In G, must be production of 
form Ap,p → ε. 

21

January 19, 2024 CS21 Lecture 7 22

NPDA, CFG equivalence
1. if Ap,q generates string x, then x can take 

NPDA P from state p (w/ empty stack) to q 
(w/ empty stack)
– assume true for derivations of length at most 

k, prove for length k+1. 
– verify case: Ap,q → Ap,rAr,q →k x = yz

– verify case: Ap,q → aAr,sb →k x = ayb
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NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/ 

empty stack) to q (w/ empty stack), then 
Ap,q generates string x
– induction on # of steps in P’s computation
– base case: 0 steps. starts and ends at same 

state p. only has time to read empty string ε. 
– G contains Ap,p → ε. 
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NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/ 

empty stack) to q (w/ empty stack), then 
Ap,q generates string x
– induction step. assume true for computations 

of length at most k, prove for length k+1. 
– if stack becomes empty sometime in the 

middle of the computation (at state r)
• y is read going from state p to r (Ap,r→* y)
• z is read going from state r to q (Ar,q→* z)
• conclude: Ap,q → Ap,rAr,q →* yz = x
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NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/ 

empty stack) to q (w/ empty stack), then 
Ap,q generates string x
– if stack becomes empty only at beginning and 

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x
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NPDA, CFG equivalence
2. if x can take NPDA P from state p (w/ 

empty stack) to q (w/ empty stack), then 
Ap,q generates string x
– if stack becomes empty only at beginning and 

end of computation.
• first step: state p to r, read a, push d
• go from state r to s, read string y (Ar,s→* y)
• last step: state s to q, read b, pop d
• conclude: Ap,q → aAr,sb →* ayb = x
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Pumping Lemma for CFLs
CFL Pumping Lemma: Let L be a CFL. 

There exists an integer p (“pumping 
length”) for which every w ∈ L with |w| ≥
p can be written as

w = uvxyz such that
1. for every i ≥ 0, uvixyiz ∈ L , and 
2. |vy| > 0, and
3. |vxy| ≤ p.
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CFL Pumping Lemma Example
Theorem: the following language is not 

context-free:
L = {anbncn : n ≥ 0}.

• Proof: 
– let p be the pumping length for L
– choose w = apbpcp

w = aaaa…abbbb…bcccc…c
– w = uvxyz, with |vy| > 0 and |vxy| ≤ p.
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CFL Pumping Lemma Example
– possibilities:

w = aaaa…aaabbb…bbcccc…c

(if v, y each contain only one type of symbol, 
then pumping on them produces a string not 
in the language)

u v x y z
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CFL Pumping Lemma Example
– possibilities:

w = aaaa…abbbb…bccccc…c

(if v or y contain more than one type of symbol, 
then pumping on them might produce a string 
with equal numbers of a’s, b’s, and c’s – if vy
contains equal numbers of a’s, b’s, and c’s. 
But they will be out of order.)

u v x y z
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CFL Pumping Lemma Example
Theorem: the following language is not 

context-free:
L = {xx : x ∈ {0,1}*}.

• Proof: 
– let p be the pumping length for L
– try w = 0p10p1
– can this be pumped?
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CFL Pumping Lemma Example
L = {xx : x ∈ {0,1}*}.

– try w = 02p12p02p12p

– w = uvxyz, with |vy| > 0 and |vxy| ≤ p.
– case: vxy in first half. 

• then uv2xy2z = 0??...?1??...?
– case: vxy in second half.

• then uv2xy2z = ??...?0??...?1
– case: vxy straddles midpoint

• then uv0xy0z = uxz = 02p1i0j12p with i ≠ 2p or j ≠ 2p 
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Pumping Lemma for CFLs
CFL Pumping Lemma: Let L be a CFL. 

There exists an integer p (“pumping 
length”) for which every w ∈ L with |w| ≥
p can be written as

w = uvxyz such that
1. for every i ≥ 0, uvixyiz ∈ L , and 
2. |vy| > 0, and
3. |vxy| ≤ p.
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CFL Pumping Lemma
Proof: consider a parse tree for a very long 

string w ∈ L:
S

A B C. . .

A D S. . . C S A A B. . .

A C

S S

A D D C

B A

B Aa

b

a a

b

b b

a b

b a
b b b

long path

some non-terminal must 
repeat on long path
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CFL Pumping Lemma
• Schematic proof:

u v x y z

S

A

A u v y z

S

A

A

u v y z

S

A

A

v x y

A
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CFL Pumping Lemma
• Schematic proof:

u v x y z

S

A

A u z

S

A

u z

S

A

x
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CFL Pumping Lemma
– how large should pumping length p be?
– need to ensure other conditions:

|vy| > 0               |vxy| ≤ p

– b = max # symbols on rhs of any production 
(assume b ≥ 2)

– if parse tree has height ≤ h, then string 
generated has length ≤ bh (so length > bh

implies height > h)
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CFL Pumping Lemma
– let m be the # of nonterminals in the grammar
– to ensure path of length at least m+2, require

|w| ≥ p = bm+2

– since |w| > bm+1, any parse tree for w has 
height > m+1

– let T be the smallest parse tree for w
– longest root-leaf path must consist of ≥ m+1 

non-terminals and 1 terminal.
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CFL Pumping Lemma
– must be a repeated non-

terminal A on long path
– select a repetition among the 

lowest m+1 non-terminals on 
path.

– pictures show that for every i
≥ 0, uvixyiz ∈ L u v x y z

S

A

A

– is |vy| > 0 ?
• smallest parse tree T ensures

– is |vxy| ≤ p?
• red path has length ≤ m+2, so ≤ bm+2 = p leaves
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