

1

Context-Free Grammars

3

Context-Free Grammars

Example:
$A \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow$

$$
000 \mathrm{~A} 111 \Rightarrow 000 \mathrm{~B} 111 \Rightarrow
$$

$\mathrm{A} \rightarrow 0 \mathrm{~A} 1$

000\#111

- a derivation of the string 000\#111
- set of all strings generated in this way is the language of the grammar $L(G)$
- called a Context-Free Language

January 17, 2024
CS21 Lecture 6

Context-Free Grammars

- Natural languages (e.g. English) structure:
<sentence> \rightarrow <noun-phrase><verb-phrase>
shorthand for multiple rules with same Ihs <verb-phrase> \rightarrow <cpx-verb> | <cpx-verb><prep-phrase>
<prep-phrase> \rightarrow <prep><cpx-noun>
<cpx-noun> \rightarrow <article><noun>
<cpx-verb> \rightarrow <verb>|<verb><noun-phrase>
<article> \rightarrow a | the
<noun> \rightarrow dog | cat | flower
<verb> \rightarrow eats | sees
<prep> \rightarrow with
Generate a string in the language of this grammar.

January 17, 2024
CS21 Lecture 6
6
6

Context-Free Grammars

- CFGs don't capture natural languages completely
- computer languages often defined by CFG
- hierarchical structure
- slightly different notation often used "BackusNaur form"
- see next slide for example

[^0]CS21 Lecture 6

7

CFG formal definition

- A context-free grammar is a 4-tuple

$$
(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{~S})
$$

where
-V is a finite set called the non-terminals
$-\Sigma$ is a finite set (disjoint from V) called the terminals
$-R$ is a finite set of productions where each production is a non-terminal and a string of terminals and nonterminals.
$-\mathrm{S} \in \mathrm{V}$ is the start variable (or start non-terminal)

CS21 Lecture 6

9

CFG formal definition

- notation: $u \Rightarrow{ }^{*} v$
- meaning: $\exists \mathrm{k} \geq 0$ and strings u_{1}, \ldots, u_{k-1} for which $u \Rightarrow^{1} u_{1} \Rightarrow^{1} u_{2} \Rightarrow^{1} \ldots \Rightarrow^{1} u_{k-1} \Rightarrow^{1} v$

- if $u=$ start symbol, this is a derivation of v
- The language of G, denoted $L(G)$ is:

$$
\left\{w \in \Sigma^{*}: S \Rightarrow^{*} w\right\}
$$

Example CFG

<stmt> \rightarrow <if-stmt> | <while-stmt> | <begin-stmt>
| <asgn-stmt>
<if-stmt> \rightarrow IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> \rightarrow WHILE <bool-expr> DO <stmt>
<begin-stmt> \rightarrow BEGIN <stmt-list> END
<stmt-list> \rightarrow <stmt> | <stmt>; <stmt-list>
<asgn-stmt> \rightarrow <var> := <arith-expr>
<bool-expr> \rightarrow <arith-expr><compare-op><arith-expr>
<compare-op> $\rightarrow<|>|\leq|\geq|=$
<arith-expr> \rightarrow <var> | <const>
| (<arith-expr><arith-op><arith-expr>)
<arith-op> $\rightarrow+\mid-$ * $^{*} \mid /$
<const> $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$
$\underset{\text { January 17, } 2024}{\text { <var }} \rightarrow \mathrm{a}|\mathrm{b}| \ldots|\mathrm{x}| \mathrm{y}|\mathrm{zS}| \mathrm{z}$

8

CFG formal definition

- u, v, w are strings of non-terminals and terminals, and $A \rightarrow w$ is a production:
"uAv yields uwv" notation: $u A v \Rightarrow u w v$ also: "yields in 1 step" notation: $u A v \Rightarrow^{1} u w v$
- in general:
"yields in k steps" notation: $\mathrm{u} \Rightarrow^{k} \mathrm{v}$
- meaning: there exists strings $u_{1}, u_{2}, \ldots u_{k-1}$ for which $u \Rightarrow{ }^{1} u_{1} \Rightarrow^{1} u_{2} \Rightarrow^{1} \ldots \Rightarrow^{1} u_{k-1} \Rightarrow^{1} v$

January 17, 2024
CS21 Lecture 6
10

CFG example

- Balanced parentheses:
- ()
-(()(()())))
- a string win $\Sigma^{*}=\{(,)\}^{*}$ is balanced iff:
- \#"("s equals \#")"s, and
- for any prefix of w, \#"("s \geq \# ")"s

Exercise: design a CFG for balanced parentheses.

CFG example

$$
S \rightarrow(S)|S S| \epsilon
$$

- Proof that $w \in L(G)$ implies w is balanced - induction on length of derivation
- base case: length 1: $S \Rightarrow \epsilon$
- general case: length n
$\cdot \mathrm{S} \Rightarrow(\mathrm{S}) \Rightarrow^{n-1}\left(\mathrm{w}^{\prime}\right)=\mathrm{w}$
- $\mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow{ }^{n-1} w^{\prime} w^{\prime \prime}=\mathrm{w}$

CFG example

$$
S \rightarrow(S)|S S| \epsilon
$$

- Proof that w is balanced implies $w \in L(G)$
- induction on length of w
- base case: length 0 : $w=\epsilon$
- general case: length n
- consider shortest prefix in language
- if whole string then $w=\left(w^{\prime}\right)$ and w^{\prime} balanced
- if proper prefix then $w=w^{\prime} w^{\prime \prime}$ with w^{\prime} and $w^{\prime \prime}$ balanced
January 17, 2024

[^0]: January 17, 2024

