

1

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as

$$
\mathrm{w}=x y z \quad \text { such that }
$$

1. for every $i \geq 0, x y^{i} z \in L$, and
2. $|y|>0$, and
3. $|x y| \leq p$.
\qquad
3

Outline

- Non-regular languages: Pumping Lemma
- Pushdown Automata
- Context-Free Grammars and Languages

January 12.202
CS22 Locture 5
2

Non-regular languages

- Using the Pumping Lemma to prove L is not regular:
- assume L is regular
- then there exists a pumping length p
- select a string $w \in L$ of length at least p
- argue that for every way of writing $w=x y z$ that satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L.
- contradiction.

January 12, 2024 CS21 Lecture 5
4

Pumping Lemma Examples

- 1 possibility:
$w=\underbrace{000000000} \underbrace{0 . .0111111111 \ldots 1}$
pumping on y gives strings in the language (?)
- this seems like a problem...
- Lemma states that for every $i \geq 0, x y i z \in L$
$-\quad x y^{0} z$ not in L. So L not regular.

January 12,2024	cs2 L Lectur 5

6

7

FA Summary

- The languages recognized by FA are the regular languages
- The regular languages are closed under union, concatenation, and star.
- Nondeterministic Finite Automata may have several choices at each step.
- NFAs recognize exactly the same languages that FAs do
\qquad
9

FA Summary

- A "problem" is a language
- A "computation" receives an input and either accepts, rejects, or loops forever
- A "computation" recognizes a language (it may also decide the language).
- Finite Automata perform simple computations that read the input from left to right and employ a finite memory.

January 12,202
cs21 Locture 5
8

FA Summary

- Regular expressions are languages built up from the operations union,
concatenation, and star.
- Regular expressions describe exactly the same languages that FAs (and NFAs) recognize.
- Some languages are not regular. This can be proved using the Pumping Lemma.

10

11

Machine view of FA
input tape

q_{3}
finite

contro

Janvary 12, 2024 CS22 Leoture 5
${ }^{12}$
12

13
15

14

16

Formal definition of NPDA

- A NPDA is a 6-tuple (Q, $\left.\Sigma, \Gamma, \delta, q_{0}, F\right)$ where:
$-Q$ is a finite set called the states
$-\Sigma$ is a finite set called the tape alphabet
$-\Gamma$ is a finite set called the stack alphabet
$-\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is
a function called the transition function
$-q_{0}$ is an element of Q called the start state
$-F$ is a subset of Q called the accept states

Januar 12. 2024
cs21 Leoture 5
37

39

Formal definition of NPDA

- NPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts string $w \in \Sigma^{\star}$ if w can be written as $W_{1} W_{2} W_{3} \ldots W_{m} \in(\Sigma \cup\{\varepsilon\})^{*}$, and
- there exist states $r_{0}, r_{1}, r_{2}, \ldots, r_{m}$, and
- there exist strings $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$ in $(\Gamma \cup\{\varepsilon\})^{*}$ $-r_{0}=q_{0}$ and $s_{0}=\varepsilon$
$-\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t, s_{i+1}=b t$ for some $t \in \Gamma$
$-r_{m} \in F$

January 12, 2024	CS2 L Lecture 5	38

38

40

Context-free grammars and languages

- languages recognized by a (N)FA are exactly the languages described by regular expressions, and they are called the regular languages
- languages recognized by a NPDA are exactly the languages described by context-free grammars, and they are called the context-free languages
\qquad Cs22 Lecture

