

Outline

- Non-regular languages: Pumping Lemma
- Pushdown Automata
- · Context-Free Grammars and Languages

January 12, 2024

CS21 Lecture 5

1

2

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every w ∈ L with |w| ≥ p can be written as

- w = xyz such that
- 1. for every $i \ge 0$, $xy^iz \in L$, and 2. |y| > 0, and
- 3. $|xy| \le p$.

January 12, 2024

CS21 Lecture 5

Non-regular languages

- Using the Pumping Lemma to prove L is not regular:
- assume L is regular
- $-\,\mbox{then}$ there exists a pumping length p
- select a string w ∈ L of length at least p
- argue that for every way of writing w = xyz that satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L.

CS21 Lecture 5

- contradiction.

January 12, 2024

3

Pumping Lemma Examples

- Theorem: $L = \{0^{i}1^{j}: i > j\}$ is not regular.
- Proof:
 - let p be the pumping length for L
 - choose w = $0^{p+1}1^{p}$

w = 000000000...011111111...1

-w = xyz, with |y| > 0 and $|xy| \le p$.

January 12, 2024

CS21 Lecture 5

Pumping Lemma Examples

1 possibility:

w = 0000000000...01111111111...1

- pumping on y gives strings in the language (?)
- this seems like a problem...
- Lemma states that for every $i \ge 0$, $xy^iz ∈ L$

CS21 Lecture 5

xyºz not in L. So L not regular.

January 12, 2024

.

- Set p = number of states of M.
- Consider $w \in L$ with $|w| \ge p$. On input w, M must go through at least p+1 states. There must be a repeated state (among first p+1).

FA Summary

- · A "problem" is a language
- A "computation" receives an input and either accepts, rejects, or loops forever.
- A "computation" recognizes a language (it may also decide the language).
- Finite Automata perform simple computations that read the input from left to right and employ a finite memory.

January 12, 2024

8

CS21 Lecture 5

FA Summary

- The languages recognized by FA are the regular languages.
- The regular languages are closed under union, concatenation, and star.
- Nondeterministic Finite Automata may have several choices at each step.
- NFAs recognize exactly the same languages that FAs do.

January 12, 2024

CS21 Lecture 5

FA Summary

- · Regular expressions are languages built up from the operations union, concatenation, and star.
- Regular expressions describe exactly the same languages that FAs (and NFAs) recognize.
- Some languages are not regular. This can be proved using the Pumping Lemma.

CS21 Lecture 5

January 12, 2024

10

11

Machine view of FA

Machine view of FA

input tape 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 q₃ control

CS21 Lecture 5

January 12, 2024

12

13

15

information

A more powerful machine · limitation of FA related to fact that they can

• What is the simplest alteration that adds unbounded "memory" to our machine?

only "remember" a bounded amount of

• Should be able to recognize, e.g., {0ⁿ1ⁿ: n ≥ 0}

CS21 Lecture 5 January 12, 2024

16

Pushdown Automata input tape finite 0 0 1 1 0 1 1 0 1 0 1 0 1 1 control q₁ (infinite) stack stack CS21 Lecture 5 18

Pushdown Automata input tape finite 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 control q₂ Note: often start by pushing \$ marker onto (infinite) stack so that we can detect "empty stack" stack January 12, 2024 CS21 Lecture 5

21

Pushdown Automata (PDA)

- We will define nondeterministic pushdown automata immediately
 - potentially several choices of "next step"
- · Deterministic PDA defined later
- weaker than NPDA
- Two ways to describe NPDA
 - diagram
- formal definition

January 12, 2024 CS21 Lecture 5

22

NPDA diagram tape alphabet Σ transition label: (tape symbol read, stack symbol popped → stack symbol pushed) stack alphabet Γ $\searrow 0, \epsilon \rightarrow 0$ start state $1,\,0\to\epsilon$ states accept states transitions January 12, 2024 CS21 Lecture 5

NPDA operation · Taking a transition labeled: $a, b \rightarrow c$ $-a \in (\Sigma \cup \{\epsilon\})$ -b,c ∈ (Γ ∪ {ε}) – read a from tape, or don't read from tape if $a = \varepsilon$ – pop b from stack, or don't pop from stack if b = ϵ push c onto stack, or don't push onto stack if c = ε CS21 Lecture 5

23 24

Example NPDA $\Sigma = \{0, 1\}$ $\Gamma = \{0, 1, \$\}$ $\bigcirc 0, \epsilon \rightarrow 0$ $1,\,0\to\epsilon$ • tape: 0 0 1 1 Stack contents: 0 0 \$ January 12, 2024 CS21 Lecture 5

28

27

30

Example NPDA $\Sigma = \{0, 1\}$ $\Gamma = \{0, 1, \$\}$ $\setminus 0, \epsilon \to 0$ • tape: 0 0 1 Stack contents: 0 0 \$ January 12, 2024 CS21 Lecture 5

33

36

Formal definition of NPDA

- A NPDA is a 6-tuple (Q, Σ , Γ , δ , q_0 , F)
- Q is a finite set called the states
- $-\Sigma$ is a finite set called the tape alphabet
- Γ is a finite set called the stack alphabet
- $-\delta:Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))$ is a function called the transition function
- q₀ is an element of Q called the start state
- F is a subset of Q called the accept states

CS21 Lecture 5

January 12, 2024

38

37

Example of formal definition

- values of • $\delta(q_1, 1, 0) = \{(q_2, \epsilon)\}$ Γ = {0, 1, \$} • $\delta(q_2, 1, 0) = \{(q_2, \epsilon)\}$ δ(•, •, •) equal {} F = {q₀, q₃}

• $\delta(q_2, \epsilon, \$) = \{(q_3, \epsilon)\}$ CS21 Lecture 5 January 12, 2024

Exercise

Formal definition of NPDA

 $w_1w_2w_3...w_m \in (\Sigma \cup \{\epsilon\})^*$, and

• there exist strings $s_0, s_1, ..., s_m$ in $(\Gamma \cup \{\epsilon\})^*$

 $-\left(r_{i+1},\,b\right)\in\delta(r_{i},\,w_{_{i+1}},\,a),$ where $s_{_{i}}$ = at, $s_{_{i+1}}$ = bt for some $t\in\Gamma^{*}$

CS21 Lecture 5

• NPDA M = (Q, Σ , Γ , δ , q_0 , F) accepts string $w \in \Sigma^*$ if w can be written as

• there exist states r_0 , r_1 , r_2 , ..., r_m , and

 $-\mathbf{r}_0 = \mathbf{q}_0$ and $\mathbf{s}_0 = \boldsymbol{\varepsilon}$

 $-r_m \in F$

January 12, 2024

Design a NPDA for the language

 ${a^ib^jc^k: i, j, k \ge 0 \text{ and } i = j \text{ or } i = k}$

January 12, 2024 CS21 Lecture 5

39

Context-free grammars and languages

- languages recognized by a (N)FA are exactly the languages described by regular expressions, and they are called the regular languages
- languages recognized by a NPDA are exactly the languages described by context-free grammars, and they are called the context-free languages

January 12, 2024

CS21 Lecture 5

40