

1

Regular expressions and FA

- Theorem: a language L is recognized by a FA if and only if L is described by a regular expression
Must prove two directions:
$(\Rightarrow) L$ is recognized by a FA implies L is described by a regular expression
$(\Leftrightarrow) L$ is described by a regular expression implies L is recognized by a FA.

Regular expressions and FA

$(\in) L$ is described by a regular expression implies L is recognized by a FA

Proof: given regular expression R we will build a NFA that recognizes $L(R)$.
then NFA, FA equivalence implies a FA for

Cs2 Locuro 4

5

Regular expressions

- R is a regular expression if R is
$-a$, for some $a \in \Sigma$
$-\varepsilon$, the empty string
$-\varnothing$, the empty set
$-\left(R_{1} \cup R_{2}\right)$, where R_{1} and R_{2} are reg. exprs
$-\left(R_{1} \circ R_{2}\right)$, where R_{1} and R_{2} are reg. exprs
$-\left(R_{1}{ }^{*}\right)$, where R_{1} is a regular expression
A reg. expression R describes the language $L(R)$.
Januar 10.2024
Cs21 Locture 4
2

L(R).

Jannary 10,2024
4

6

Regular expressions and FA

- Theorem: a language L is recognized by a FA if and only if L is described by a regular expression.
Must prove two directions:
$(\Rightarrow) L$ is recognized by a FA implies L is described by a regular expression (ϵ) is described by a regular expression implies L is recognized by a FA.

Regular expressions and FA

$\Rightarrow) L$ is recognized by a $F A$ implies L is described by a regular expression

Proof: given FA M that recognizes L, we will

1. build an equivalent machine "Generalized Nondeterministic Finite Automaton" (GNFA)
2. convert the GNFA into a regular expression
\qquad
8

Regular expressions and FA

- GNFA definition:
- it is a NFA, but may have regular expressions labeling its transitions
- GNFA accepts string $w \in \Sigma^{*}$ if can be written $w=w_{1} w_{2} w_{3} \ldots w_{k}$
where each $w_{i} \in \Sigma^{*}$, and there is a path from the start state to an accept state in which the $i^{i n}$ transition traversed is labeled with R for which $w_{i} \in L(R)$
serter

9

Regular expressions and FA

- Recall step 1: build an equivalent GNFA
- Our FA M is a GNFA.
- We will require "normal form" for GNFA to make the proof easier:
- single accept state $\mathrm{q}_{\text {accept }}$ that has all possible incoming arrows
- every state has all possible outgoing arrows exception: start state q_{0} has no self-loop
\qquad
Cs22 Lecture 4
${ }^{10}$
10

11

Regular expressions and FA

- On to step 2: convert the GNFA into a regular expression
- if normal-form GNFA has two states:
the regular expression R labeling the single transition describes the language recognized by the GNFA
nuary 10,2024
12

Regular expressions and FA

- if GNFA has more than 2 states:

- select one " $\mathrm{q}_{\text {rip }}$ "; delete it; repair transitions so that machine still recognizes same language.
- repeat until only 2 states
Regular expressions and FA
- how to repair the transitions:
- for every pair of states q_{i} and q_{j} do
(ai)

$\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{3}\right) \cup\left(R_{4}\right)$
(ai)

(a)
Januar 10. 2024
14
15
Regular expressions and FA
- Claim: i-state GNFA G equivalent to (i-1)-
state GNFA ${ }^{\prime}$ (obtained by removing ${ }^{\text {(in }}$)
state GNFA G' (obtained by removing qrip
- Proof:
if G accepts string w, then it does so by entering
states: $\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \ldots$, qaccept
- else, break state sequence into runs of q)
-

transition from q_{i} to q_{i} in G^{\prime} allows all strings taking G from qi to qu using qrip (see slide)

- thus G^{\prime} accepts w
16

Regular expressions and FA

18

19

Limits on the power of FA

- Is every language describable by a sufficiently complex regular expression?
- If someone asks you to design a FA for a language that seems hard, how do you know when to give up?
- Is this language regular?
$\{\mathrm{w}: \mathrm{w}$ has an equal \# of " 01 " and " 10 " substrings $\}$
Jannuary 10. 2024
CS22 Locture

21

Regular expressions and FA

- Theorem: a language L is recognized by a FA iff L is described by a regular expr.
- Languages recognized by a FA are called regular languages.
- Rephrasing what we know so far:
- regular languages closed under 3 operations
- NFA recognize exactly the regular languages
- regular expressions describe exactly the
regular languages

20

Limits on the power of FA

- Intuition
- FA can only remember finite amount o information. They cannot count
- languages that "entail counting" should be - languages tha
non-regular...
- Intuition not enough
$\{\mathrm{w}$: w has an equal \# of " 01 " and " 10 " substrings
$=0 \Sigma^{*} 0 \cup 1 \Sigma^{*}$
but $\{w$: w has an equal \# of " 0 " and " 1 " substrings $\}$ is not regular!
Senuary $10,2024 \quad \mathrm{Cs} 21$ Lectura 4
22

Limits on the power of FA
How do you prove that there is no Finite
Automaton recognizing a given language?

23

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \geq p$ can be written as

$$
w=x y z \quad \text { such that }
$$

1. for every $i \geq 0, x y^{i z} \in L$, and
2. $|y|>0$, and
3. $|x y| \leq p$.

January 10.2024
CS21 Lecture 4
${ }^{24}$

24

Non-regular languages

- Using the Pumping Lemma to prove L is not regular:
- assume L is regular
- then there exists a pumping length p
- select a string $w \in L$ of length at least p
- argue that for every way of writing $w=x y z$ that satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L .
- contradiction

Janaray 10, 2024 Cs22 Leocture
25

Pumping Lemma Examples

- 3 possibilities:
$w=\underbrace{000000000 \ldots 0111111111 \ldots 1}$
$w=000000000 \ldots 0111111111 \ldots 1$
$w=000000000 \ldots 0111111111^{z} .1$
${ }_{x}^{x}{ }_{y}^{y}{ }_{z}^{z}$ in language L.

Januar 10. 2024 ss2 Loecture 4

27

Pumping Lemma Examples

- Theorem: $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.
- Proof:
- let p be the pumping length for L
- choose w $=0$ p $1^{\text {p }}$
$w=000000000 \ldots 011111111 \ldots$
- $w=x y z$, with $|y|>0$ and $|x y| \leq p$.

Jannary 10, 224
Cs22 Leoture 4
26

Pumping Lemma Examples

- Theorem: $L=\{w:$ w has an equal $\#$ of $0 s$ and 1s\} is not regular.
- Proof:
- let p be the pumping length for L
- choose w $=0$ p1p
$w=000000000 \ldots 0111111111 \ldots 1$
$-w=x y z$, with $|y|>0$ and $|x y| \leq p$.
\qquad ${ }^{28}$
28

29

Pumping Lemma Examples

- recall condition $3:|x y| \leq p$
since $w=0^{\rho} 1^{p}$ we know more about how can be divided, and this case cannot arise: $\mathrm{w}=000000000 \ldots 0111111111 \ldots 1$
- so we do get a contradiction.
- conclude that L is not regular.
nuary 10.2224
CS2 L Lecture 4
${ }^{30}$
30

