

1

- At each step, several choices for next state - if possible to reach accept, then input accepted January 8, $2024 \quad$ Cs2 L Lecture 3

NFA formal definition

A nondeterministic FA $\begin{array}{cc}\text { transit } \\ \text { labeled }\end{array}$ "powerset of Q": Q, Σ, δ alpha subsets of Q
$-Q$ is a finite set called symbols or ε
$-\Sigma$ is a finite set called the alphabet
$-\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$ is a function called the transition function
$-q_{0}$ is an element of Q called the start state
$-F$ is a subset of Q called the accept states
Januarar 8.2024
CS21 Leoture 3
3

Formal description of NFA operation

NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
accepts a string $w=W_{1} W_{2} W_{3} \ldots W_{n} \in \Sigma^{*}$ if w can be written (by inserting ε 's) as:

$$
y=y_{1} y_{2} y_{3} \ldots y_{m} \in(\Sigma \cup\{\varepsilon\})^{*}
$$

and \exists sequence $r_{0}, r_{1}, \ldots, r_{m}$ of states for which

$$
-r_{0}=q_{0}
$$

$-r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for $i=0,1,2, \ldots, m-1$
$-r_{m} \in F$
Janaay 8,2024
4

Closures
- Recall: want to show the set of languages
recognized by NFA is closed under:
- union " $\mathrm{C}=(\mathrm{A} \cup \mathrm{B})$ "
- concatenation " $\mathrm{C}=(\mathrm{A} \circ \mathrm{B})$ "
- star " $\mathrm{C}=\mathrm{A}^{*}$ "
Jannays 8.2024

5

7

8

NFA, FA equivalence

Theorem: a language L is recognized by a FA if and only if L is recognized by a NFA.

Must prove two directions:
\Rightarrow) L is recognized by a FA implies L is
recognized by a NFA
$(\Leftrightarrow) L$ is recognized by a NFA implies L is
recognized by a FA. (usually one is easy, the other more difficult)
\qquad
9

NFA, FA equivalence

$(\Rightarrow) L$ is recognized by a FA implies L is recognized by a NFA

Proof: a finite automaton is a
nondeterministic finite automaton that happens to have no ε-transitions, and for which each state has exactly one outgoing transition for each symbol.

Jannarar 8, 2024
Cs21 Lecture 3
${ }^{10}$
10

NFA, FA equivalence

$(\Leftarrow) L$ is recognized by a NFA implies L is recognized by a FA.

Proof: we will build a FA that simulates the NFA (and thus recognizes the same language).

- alphabet will be the same
- what are the states of the FA?

January 8, 2024
cs21 Locture 3

13

NFA, FA equivalence

- We have proved (\Leftarrow) by construction.

Formally we should also prove that the construction works, by induction on the number of steps of the computation.

- at each step, the state of the FA M' is exactly the set of reachable states of the NFA M..

14

16

Next...

- Describe the set of languages that can be built up from:
- unions
- concatenations
- star operations
- Called "patterns" or regular expressions
- Theorem: a language L is recognized by a $F A$ if and only if L is described by a regular expression.
\qquad

Regular expressions

- R is a regular expression if R is

$$
-\mathrm{a} \text {, for some } \mathrm{a} \in \Sigma
$$

$-\varepsilon$, the empty string
$-\varnothing$, the empty set
$-\left(R_{1} \cup R_{2}\right)$, where R_{1} and R_{2} are reg. exprs.
$-\left(R_{1} \circ R_{2}\right)$, where R_{1} and R_{2} are reg. exprs.
$-\left(R_{1}{ }^{*}\right)$, where R_{1} is a regular expression
A reg. expression R describes the language $L(R)$.
Jannary 8 , 2024
CS21 Lecture 3
${ }^{18}$
18

Regular expressions		
- example: $\mathrm{R}=(0 \cup 1)$ - if $\Sigma=\{0,1\}$ then use " Σ " as shorthand for R		
- example: $\mathrm{R}=0 \circ \Sigma^{*}$ - shorthand: omit "。" $\quad R=0 \Sigma^{*}$ - precedence: *, then \circ then U , unless override by parentheses - in example $\mathrm{R}=0\left(\Sigma^{*}\right)$, not $\mathrm{R}=(0 \Sigma)^{*}$		
Janaray 8, 224	Cs21 Leoure 3	${ }_{19}$

Some examples		
- $\{w$: w has at least one 1$\}$ $=\Sigma^{*} 1 \Sigma^{*}$ - $\{\mathrm{w}: \mathrm{w}$ starts and ends with same symbol $\}$ $=0 \Sigma^{\star} 0 \cup 1 \Sigma^{\star} 1 \cup 0 \cup 1$		
- $\{w:\|w\| \leq 5\}$ $=(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)$ - $\left\{\mathrm{w}\right.$: every $3^{\text {rd }}$ position of w is 1 sating winh he misstostastion $\}$ $=(1 \Sigma \Sigma)^{\star}(\varepsilon \cup 1 \cup 1 \Sigma)$		
Janayar 8,2024	cs21 Lecture 3	20

20

Manipulating regular expressions

- The empty set and the empty string:
$-R \cup \varnothing=R$
$-\mathrm{R} \varepsilon=\varepsilon \mathrm{R}=\mathrm{R}$
$-R \varnothing=\varnothing R=\varnothing$
$-U$ and \circ behave like,$+ x ; \varnothing, \varepsilon$ behave like 0,1
- additional identities:
$-R \cup R=R \quad$ (here + and \cup differ)
$-\left(R_{1}{ }^{*} R_{2}\right)^{*} R_{1}{ }^{*}=\left(R_{1} \cup R_{2}\right)^{*}$
$-R_{1}\left(R_{2} R_{1}\right)^{*}=\left(R_{1} R_{2}\right)^{*} R_{1}$
Jannaar 8, 2224
cs21 Leoture 3

