

1

Extended Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis everything we can compute in time $t(n)$ on a physical computer can be computed on a (probabilistic)Turing Machine in time $t(n)^{O(1)}$ (polynomial slowdown)

- Quantum computation challenges this belief March 8, 2024

CS21 Lecture 26

3

A different model

- infinite tape of a Turing Machine is an idealized model of computer
- real computer is a Finite Automaton (!)
$-n$ bits of memory
-2^{n} states

Outline

- Challenges to Extended Church-Turing
- quantum computation

March 8, 2024

2

For use later...

- Fourier transform:

March 8, 2024
CS21 Lecture 26

4

Model of deterministic computation

March 8, 2024
CS21 Lecture 26

6

7

CS21 Lecture 26
9

One quantum register

- register with n qubits; shorthand for basic states

$$
|0\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)|1\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)|2\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \cdots\left|2^{n}-1\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

Model of randomized computation

- at end of computation, see specific state
- demand correct result with high probability
- think of as "measuring" system:

$$
\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
\vdots \\
p_{2}-1
\end{array}\right) \Rightarrow\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) / \begin{gathered}
\text { see tith basic state } \\
\text { with probability } \mathrm{p}_{\mathrm{i}}
\end{gathered}
$$

8

Model of quantum computation

- at end of computation, see specific state
- think of as "measuring" system:

$$
\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{2^{n}-1}
\end{array}\right) \Rightarrow\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) / \begin{gathered}
\text { see } \mathrm{i}^{\text {th }} \text { basic state } \\
\text { with probability }\left|\mathrm{c}_{\mathrm{i}}\right|^{2} \\
\end{gathered}
$$

March 8, 2024

Two quantum registers

- registers with n, m qubits: shorthand for 2^{n+m} basic states:

$$
\begin{aligned}
& |0\rangle|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)|0\rangle|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& |1\rangle|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)|1\rangle|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Two quantum registers

shorthand for general unentangled state

$$
|c\rangle|d\rangle=\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2^{n}-1}
\end{array}\right) \otimes\left(\begin{array}{c}
d_{0} \\
d_{1} \\
d_{2} \\
\vdots \\
d_{2^{m}-1}
\end{array}\right)=\sum_{i, j} c_{i} d_{j}|i\rangle|j\rangle
$$

- shorthand for any other state (entangled state)

$$
|a\rangle=\sum_{i, j} a_{i, j}|i\rangle|j\rangle
$$

example: $\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)$

EPR "paradox"

$$
\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)
$$

- register 1 in LA, register 2 sent to NYC
- measure register 2
- probability $1 \frac{1}{2}$: see $|0\rangle$ state collapses to $|0\rangle|0\rangle$
- probability $1 / 2$: see $|1\rangle$ state collapses to $|1\rangle|1\rangle$
- measure register 1
- guaranteed to be same as observed in NYC
- instantaneous "communication"

March 8, 2024
CS21 Lecture 26
15

15

Quantum complexity

- one measure: complexity of $f=$ length of shortest sequence of local operations computing f

Partial measurement

- general state:

$$
|a\rangle=\sum_{i, j} a_{i, j}|i\rangle|j\rangle=\sum_{j}\left(\sum_{i} a_{i, j}|i\rangle\right) \otimes|j\rangle
$$

- if measure just $2 n d$ register, see state $|j\rangle$ in $2^{\text {nd }}$ register with probability $\sum_{i}\left|a_{i, j}\right|^{2}$
normalization constant
- state collapses to: $\alpha\left(\sum_{i} a_{i, j}|i\rangle\right) \otimes|j\rangle$

March 8, 2024
CS21 Lecture 26
14
14

Quantum complexity

- classical computation of function f

- some functions are easy, some hard
- need to measure "complexity" of M_{f}

March 8, 2024
CS21 Lecture 26

16

Quantum complexity

- analogous notion of "local operation" for quantum systems
- in each step
- split qubits into register of 1 or 2 , and rest - operate only on small register
- "efficient" in both settings: \# local operations polynomial in \# bits n

Efficiently quantum computable functions

- For every $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{m}}$ that is efficiently computable classically
- the unitary transform U_{f} :

$$
U_{f}(|i\rangle|j\rangle)=|i\rangle|f(i) \oplus j\rangle
$$

- note, when $2^{\text {nd }}$ register $=|0\rangle$

$$
U_{f}(|i\rangle|0\rangle)=|i\rangle|f(i)\rangle
$$

Shor's factoring algorithm

- well-known: factoring equivalent to order finding
- input: y, N
- output : smallest $r>0$ such that

$$
y^{r}=1 \bmod N
$$

Factoring: step 1

- given $\mathrm{y}, \mathrm{N} ; \mathrm{f}(\mathrm{i})=\mathrm{y}^{\mathrm{i}} \bmod \mathrm{N}$; have $\sum_{i}|i\rangle|f(i)\rangle$

Factoring: step 1

input: y, N

- start state: $|0\rangle|0\rangle$
- apply FT on register $1:\left(\sum_{i}|i\rangle\right) \otimes|0\rangle$
- apply U_{f} for function $f(i)=y^{i} \bmod N$

$$
U_{f}\left(\left(\sum_{i}|i\rangle\right) \otimes|0\rangle\right)=\sum_{i}|i\rangle|f(i)\rangle
$$

"quantum parallelization"
March 8, 2024
CS21 Lecture 26
22
22

Factoring: step 2

- measure register 2
- state collapses to:

Key: period $=r$ (the number we are seeking)
$|f(s)\rangle=\sum_{j=0}^{\left\lfloor 2^{n} / r\right\rfloor}|j r+s\rangle|f(s)\rangle$

Factoring: step 3

- Apply FT to register 1
$F T \cdot\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{c}\text { small } \\ \text { Iarge } \\ \vdots \\ \text { small } \\ \text { small } \\ \text { small } \\ \vdots \\ \text { small } \\ \vdots \\ \text { Iarge } \\ \text { small } \\ \vdots \\ \text { small }\end{array}\right)$
$\begin{aligned} & \text { large in positions b such } \\ & \text { that } \mathrm{r} \cdot \mathrm{b} \text { close to N }\end{aligned}$
$\begin{aligned} & \text { • obtain b } \\ & \text { (classically, basic number register 1 } \\ & \text { theory) } \\ & \text { Cs21 Lecture } 26\end{aligned}$
March 8,2024

25

27

Quantum computation

- if can build quantum computers, they will be capable of factoring in polynomial time - big "if"
- do not believe factoring possible in polynomial time classically - but factoring in P if $P=N P$
- serious challenge to extended ChurchTuring Thesis

$$
\text { March 8, } 2024
$$

CS21 Lecture 26

The very last slide

- Course review slides on website
- Fill out TQFR surveys!
- Course to consider
- CS139 (advanced algorithms)
- CS150 (probability and computation)
- CS151 (complexity theory)
- CS153 (current topics in theoretical CS)
- Good luck
- on final
- in CS, at Caltech, beyond...
- Thank you!

March 8, 2024
CS21 Lecture 26

