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Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be
computed on a (probavilistic) TUring Machine
in time t(n)°") (polynomial slowdown)

* Quantum computation challenges this belief
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A different model

« infinite tape of a Turing Machine is an
idealized model of computer

+ real computer is a Finite Automaton (!)
— n bits of memory
— 2" states
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Outline

» Challenges to Extended Church-Turing

— quantum computation
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For use later...

¢ Fourier transform:

/\ [\ [\ [\

time domain frequency domain
r / can recover r
[ { { I =) from position
PP PY PP [ IR I I I B ‘
time domain frequency domain
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Model of deterministic computation

1 0 0 0

0 1 0 0 -
ol|lo]]1 0 / 2" possible
ofjogfe 0 basic states
o)\o)\o 1

state at

state at time t \ time t+1

one 1 per 00O0O 0

column 1000 1|
0010 o |
0101 0
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Model of randomized computation

PO
P1 /

possible states at time t:

p2 2ipi=1 Pp€ER?
17_3

pon_1 state at

state at time t \ time t+1
“stochastic 0 % 0 % 0 %
matrix ” 1141 % e
sum in each % i 1 % o~ i
column =1 0 % 00 i %

Model of randomized computation

« at end of computation, see specific state
» demand correct result with high probability
+ think of as “measuring” system:

po 8 see ith basic state
P with probability p;
D2 N 1
p3 0
poan_1 0
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Model of quantum computation
co . .
c possible states at time t:
C; / Zi|Ci|2=1 GEC
€3
CQLl state at
\ time t+1
“unitary \
i 1 1 1
matrix B 7 (o
preserves 1 1 _1 /=11
L> norm V2 V2 V2
9

One quantum register

« register with n qubits; shorthand for basic states

1 0 0 0
0 1 0 0
0 0 1 0
o =g =g 2=]5| ==,
0 0 0 1
€0
shorthand for | . o
— 2 — .
general state lo=| o [=Xah

con_q
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Model of quantum computation
« at end of computation, see specific state
« think of as “measuring” system:
co 0
c1 0 see " basic state
o 1 with probability |ci|?
c3 = 0
can_1 0
10
Two quantum registers
* registers with n, m qubits: shorthand for 2nm
basic states:
1 0
1 1 0 1 0 1
|0)|0) = ® = |0)[1) = ® =
(3)6(8) - &) o= 8):2)- 3]
0 0
0 1 0 0 0 0
[1)|0) = ® = [1)[1) = ® =
(2)e(3) (& Jom=(2)e(2)- ]
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Two quantum registers

shorthand \ o do
for general a dy

o)ld) = : ® d. = e;di]1)| 7
unentangled 1) 2 > %u 510)15)
state con_1 dom_1

+ shorthand for any other state (entangled state)

[a)=%; jai,;j [D)))
example:  73(19)10) +11)[1))
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EPR “paradox”
25(10)[0) +1)I1))

* register 1 in LA, register 2 sent to NYC

* measure register 2
— probability %: see |0) state collapses to |0)|0)
— probability %: see |1) state collapses to |1)|1)
— measure register 1
— guaranteed to be same as observed in NYC
— instantaneous “communication”
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Quantum complexity

* one measure: complexity of f =

length of shortest sequence of local
operations computing f

« example local operation:

0
i - O
‘ position x = 0010 ‘\ 0
logical OR 0
‘ position x’ =1010 ‘ 1
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Partial measurement

* general state:
la) = > aili)li) = 203 aijli)) @ 15)
7, J i

* if measure just 2nd register, see state |j) in
2nd register with probability - la: I

normalization
constant \
« state collapses to: (Z az‘,j|i>) ® 17)
7
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Quantum complexity

* classical computation of function f

1 000 11 _
0010 o] |oO
0101 0 1 f(X)th

position

‘ Mz = transition matrix for f ‘

» some functions are easy, some hard
* need to measure “complexity” of M;
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Quantum complexity

« analogous notion of “local operation” for
quantum systems

* in each step

— split qubits into register of 1 or 2, and rest
— operate only on small register

« “efficient” in both settings: # local
operations polynomial in # bits n

17
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Efficiently quantum computable
functions

* For every f:{0,1}" - {0,1}™that is efficiently
computable classically

* the unitary transform U
Ur(I0)l5)) = 1915 () & )
* note, when 2 register = |0)

Up(18)10)) = [9)| £ ()
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Efficiently quantum computable
functions

« Fourier Transform
— N=2"; w such that wN = 1; unitary matrix FT =

(w0)0 (wO)l (wO)Q (WO)N—I

(wl)O (wl)l (w1)2 . (wl)N—l

(WQ)O (WQ)I (w2)2 . (w2)N—1
(wNi—l)O (wN—l)l (wN_1)2 L (wN—l)N—l

—usual FT dimension n; this is dimension N
—note: FT:|0) = all ones vector
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Shor’s factoring algorithm

+ well-known: factoring equivalent to order
finding

—input:y, N
—output : smallest r>0 such that
y"=1mod N

21

Factoring: step 1

+ given y, N; f(i) = y'mod N; have »_[9)[f(2))

1 0
0 1 . -
: : || "] in each vector, period =r,
9 2 the order of y mod N
0 1
A+ s [+
0 0
1 0
0 1 offset depends on 2™
o o register
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Factoring: step 1

input: y, N
« start state: |0)|0)
« apply FT on register 1: (3};1i)) & |0)
« apply U for function f(i) = y' mod N

Uy ((Z |i)> ® |0>> =>_[D)If (@)

“quantum parallelization”
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Factoring: step 2

* measure register 2

« state collapses to: o
0
) 1
Key: period =r 0 12%/r]
(the number we O [F() = X lir+9)lf(s))
j=0
are seeking) ;
1
0
0
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Factoring: step 3

* Apply FT to register 1

small

Quantum computation

« if can build quantum computers, they will
be capable of factoring in polynomial time
— big “if”

+ do not believe factoring possible in
polynomial time classically
— but factoring in P if P = NP

+ serious challenge to extended Church-
Turing Thesis
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o large large in positions b such
: ; that r-b close to N
small
1 small .
0 small * measure register 1
FT-| : H
0 small * obtain b
: large | . getermine r from b
: ; (classically, basic number
small theory)
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The very last slide

» Course review slides on website
» Fill out TQFR surveys!
» Course to consider
— CS139 (advanced algorithms)
— CS150 (probability and computation)
— CS151 (complexity theory)
— CS153 (current topics in theoretical CS)

* Good luck

— on final

—in CS, at Caltech, beyond...
* Thank you!
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