

Extended Church-Turing Thesis · the belief that TMs formalize our intuitive notion of an efficient algorithm is: The "extended" Church-Turing Thesis everything we can compute in time t(n) on a physical computer can be computed on a (probabilistic) Turing Machine in time $t(n)^{O(1)}$ (polynomial slowdown) Quantum computation challenges this belief March 8, 2024 CS21 Lecture 26

3

Model of quantum computation c_0 possible states at time t: c_1 c_2 $\sum_i |c_i|^2 = 1$ $c_i \in C$ c_3 state at $c_{2^{n}-1}$ state at time t time t+1 "unitary matrix ' preserves L₂ norm March 8, 2024 CS21 Lecture 26 9

9

<section-header>EPR "paradox" $\frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)$ • negister 1 in LA, register 2 sent to NYC• neasure register 2• nobability ½ see 0) state collapses to 0)00• nobability ½ see 1) state collapses to 1010• neasure register 1• neasure register 2• neasure register 2• neasure register 1• neasure register 2• neasure 2</t

