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Outline

• Challenges to Extended Church-Turing 
– randomized computation
– quantum computation

• Course review
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Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an efficient algorithm is:

• randomized computation challenges this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n) 
on a physical computer can be 

computed on a Turing Machine in time 
t(n)O(1) (polynomial slowdown)
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RP,coRP, BPP

PSPACEP

EXP

coRP RP
BPP

ZPP

• from definitions: ZPP ⊆ RP, coRP ⊆ BPP
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Polynomial identity testing
• Given: polynomial p(x1, x2, …, xn) as 

arithmetic formula (fan-out 1):

-

*

x1 x2

*

+ -

x3 … xn

*
• multiplication (fan-in 2)

• addition (fan-in 2)
• negation (fan-in 1)

variables take values in finite field F
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Polynomial identity testing
• Question: Is p identically zero?

– i.e., is p(x) = 0 for all x ∈	Fn 
– (assume |F| larger than degree…)

• “polynomial identity testing” because given 
two polynomials p, q, we can check the 
identity p ≡	q by checking if (p – q) ≡ 0 
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Polynomial identity testing
Lemma (Schwartz-Zippel): Let 

p(x1, x2, …, xn) 
 be a total degree d polynomial over a field 

F and let S be any subset of F. Then if p is 
not identically 0, 

Prr1,r2,…,rn∈S[ p(r1, r2, …, rn) = 0] ≤ d/|S|.
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Polynomial identity testing
• Given: polynomial p(x1, x2, …, xn) over 

field F

• Is p identically zero?

• Note: degree d is at most the size of input

-

*

x1 x2

*

+ -

x3 … xn

*
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Polynomial identity testing
• randomized algorithm: pick a subset S ⊆ F 

of size 2d
– pick r1, r2, …, rn from S uniformly at random
– if p(r1, r2, …, rn) = 0, answer “yes”
– if p(r1, r2, …, rn) ≠ 0, answer “no”

• if p identically zero, never wrong
• if not, Schwartz-Zippel ensures probability 

of error at most ½
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Randomized complexity classes

• We have shown:
–Polynomial Identity Testing is in coRP

–note: no sub-exponential time 
deterministic algorithm know
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Randomized complexity classes
• How powerful is randomized computation?
• We have seen an example of a problem in 

BPP 
 that we only know how to solve 

deterministically in EXP.

Is randomness a panacea 
for intractability?
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Randomized complexity classes

PSPACEP

EXP

coRP RP
BPP

ZPP

• believed that P = ZPP = RP = coRP = BPP  (!)

12



3

Course 
Review
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Review
• Highest level: 2 main points

1. Decidability
– problem solvable by an algorithm = problem is 

decidable
– some problems are not decidable (e.g. HALT)
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Review
• Highest level: 2 main points

2. Tractability
– problem solvable in polynomial time = 

problem is tractable
– some problems are not tractable (EXP-

complete problems)
– huge number of problems are likely not to be 

tractable (NP-complete problems)
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Review
• Important ideas

– “problem” formalized as language
• language = set of strings

– “computation” formalized as simple machine
• finite automata
• pushdown automata
• Turing Machine

– “power” of machine formalized as the set of 
languages it recognizes
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Review
• Important ideas (continued):

– simulation used to show one model at least as 
powerful as another

– diagonalization used to show one model 
strictly more powerful than another
• also Pumping Lemma

– reduction used to compare one problem to 
another
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Review
• Important ideas (continued):

– complexity theory investigates the resources 
required to solve problems
• time, space, others…

– complexity class = set of languages
– language L is C-hard if every problem in C 

reduces to L
– language L is C-complete if L is C-hard and L 

is in C.
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Review
• Important ideas (continued):

A complete problem is a surrogate             
for the entire class.
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Summary

Part I: automata

20

March 6, 2024 CS21 Lecture 26 21

Finite Automata

• read input one symbol at a time; follow 
arrows; accept if end in accept state

states

(single) start state

(several) accept states

1
alphabet 
Σ = {0,1}

0

0,1

0,1
transition for each symbol
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Finite Automata
• Non-deterministic variant: NFA
• Regular expressions built up from:

– unions
– concatenations
– star operations

Main results: same set of languages 
recognized by FA, NFA and regular 
expressions (“regular languages”).
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Pushdown Automata

0 1 1 0 0 1 1 1 0 1 0 0 1 0 1

q0

input tapefinite 
control

0

1

1

0

:

(infinite) 
stack

New capabilities:

• can push symbol onto 
stack

• can pop symbol off of 
stack
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Context-Free Grammars

    
    A → 0A1
    A → B
    B → #

start 
symbol

terminal 
symbols

non-terminal 
symbols

production

24
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Pushdown Automata
Main results: same set of languages 

recognized by NPDA, and context-free 
grammars (“context-free languages”).

• and DPDA’s weaker than NPDA’s…
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Non-regular languages
Pumping Lemma: Let L be a regular 

language. There exists an integer p 
(“pumping length”) for which every w	∈	L 
with |w| ≥	p can be written as

w = xyz     such that
1. for every i ≥	0, xyiz ∈	L , and 
2. |y| > 0, and
3. |xy| ≤	p.
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Pumping Lemma for CFLs
CFL Pumping Lemma: Let L be a CFL. 

There exists an integer p (“pumping 
length”) for which every w ∈	L with |w| ≥
	p can be written as

w = uvxyz     such that
1. for every i ≥	0, uvixyiz ∈	L , and 
2. |vy| > 0, and
3. |vxy| ≤	p.
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Summary

Part II: Turing Machines and 
decidability
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Turing Machines

• New capabilities:
– infinite tape
– can read OR write to tape
– read/write head can move left and right

0 1 1 0 0 1 1 1 0 1 0 0

q0

input tape

finite 
control

…

read/write 
head
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Deciding and Recognizing

• TM M:
– L(M) is the language it recognizes
– if M rejects every x ∉ L(M) it decides L
– set of languages recognized by some TM is 

called Turing-recognizable or recursively 
enumerable (RE)

– set of languages decided by some TM is 
called Turing-decidable or decidable or 
recursive

machineinput
• accept

• reject 

• loop forever

30
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Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an algorithm is:

• Note: this is a belief, not a theorem.

The Church-Turing Thesis

everything we can compute on a 
physical computer  

can be computed on a Turing Machine

31

March 6, 2024 CS21 Lecture 26 32

The Halting Problem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’ 
that cannot be in 
the table.
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Decidable, RE, coRE…

some problems (e.g HALT) have no 
algorithms 

regular 
languages

context free 
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE
co-HALT
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Definition of reduction
• More refined notion of reduction:

– “many-one” reduction (commonly)
– “mapping” reduction (book)

yes

no

yes

no

A B
reduction from 
language A to 
language B

f

f
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Using reductions
• Used reductions to prove lots of problems 

were:
– undecidable (reduce from undecidable)
– non-RE (reduce from non-RE)

• or show undecidable, and coRE
– non-coRE (reduce from non-coRE)

• or show undecidable, and RE
Rice’s Theorem: Every nontrivial TM 

property is undecidable.
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The Recursion Theorem
Theorem: Let T be a TM that computes fn:

t: Σ* x Σ* → Σ*
 There is a TM R that computes the fn:

r: Σ* → Σ*
 defined as r(w) = t(w, <R>).

• In the course of computation, a Turing 
Machine can output its own description.
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Summary

Part III: Complexity
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Complexity
• Complexity Theory = study of what is 

computationally feasible (or tractable) with 
limited resources:
– running time
– storage space
– number of random bits 
– degree of parallelism
– rounds of interaction
– others…

main focus

not in this course
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Time and Space Complexity
Definition: the time complexity of a TM M is a 

function f:N → N, where f(n) is the maximum 
number of steps M uses on any input of length n.

Definition: the space complexity of a TM M is a 
function f:N → N, where f(n) is the maximum 
number of tape cells M scans on any input of 
length n.
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Complexity Classes
Definition: TIME(t(n)) = {L : there exists a 

TM M that decides L in time O(t(n))}
P = ∪k ≥ 1 TIME(nk)

EXP = ∪k ≥ 1 TIME(2nk)
Definition: SPACE(t(n)) = {L : there exists a 

TM M that decides L in space O(t(n))}
PSPACE= ∪k ≥ 1 SPACE(nk)
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Complexity Classes
Definition: NTIME(t(n)) = {L : there exists a 

NTM M that decides L in time O(t(n))}
NP= ∪k ≥ 1 NTIME(nk)

• Theorem: P ⊆	EXP
• P ⊆	NP ⊆	PSPACE ⊆	EXP
• Don’t know if any of the containments are 

proper. 
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Alternate definition of NP
Theorem: language L is in NP if and only if 

it is expressible as:
L = { x | ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

 where R is a language in P.
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Poly-time reductions
• Type of reduction we will use:

– “many-one” poly-time reduction (commonly)
– “mapping” poly-time reduction (book)

yes

no

yes

no

A B
1.  f poly-time 

computable

2.  YES maps 
to YES

3.  NO maps 
to NO

f

f
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Hardness and completeness
Definition: a language L is C-hard if for 

every language A ∈ C, A poly-time 
reduces to L; i.e., A ≤P L.

 can show L is C-hard by reducing from a known  
C-hard problem

Definition: a language L is C-complete if L 
is C-hard and L ∈ C
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Complete problems
• EXP-complete: ATMB = {<M, x, m> : M is a 

TM that accepts x within at most m steps}
• PSPACE-complete: QSAT = {φ : φ is a 3-

CNF, and ∃x1∀x2∃x3… ∀xn φ(x1, x2, … xn) }

• NP-complete: 3SAT = {φ : φ is a 
satisfiable 3-CNF formula}
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Lots of NP-complete problems
• Indendent Set
• Vertex Cover
• Clique
• Hamilton Path (directed and undirected)
• Hamilton Cycle and TSP
• Subset Sum
• NAE3SAT
• Max Cut
• Problem sets: max/min Bisection, 3-coloring, subgraph 

isomorphism, subset sum, (3,3)-SAT, Partition, 
Knapsack, Max2SAT…
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Other complexity classes
• coNP – complement of NP

– complete problems: UNSAT, DNF-TAUTOLOGY

• NP intersect coNP 
– contains (decision version of ) FACTORING

• PSPACE 
– complete problems: QSAT, GEOGRAPHY
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Complexity classes

all containments believed to be proper

PSPACE

NPP

EXP coNP

decidable 
languages
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Quantum 
Computation
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Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an efficient algorithm is:

• Quantum computation challenges this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n) 
on a physical computer can be 

computed on a (probabilistic)Turing Machine 
in time t(n)O(1) (polynomial slowdown)
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For use later…
• Fourier transform:

time domain frequency  domain

time domain frequency  domain

r can recover r 
from position
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A different model
• infinite tape of a Turing Machine is an 

idealized model of computer

• real computer is a Finite Automaton (!)
– n bits of memory
– 2n states 
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Model of deterministic computation

2n possible 
basic states

one 1 per 
column

state at time t
state at 
time t+1
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Model of randomized computation
possible states at time t:

∑! 𝑝! = 1     pi ∈	R+

“stochastic 
matrix ” 

sum in each 
column = 1

state at time t
state at 
time t+1
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Model of randomized computation

• at end of computation, see specific state
• demand correct result with high probability
• think of as “measuring” system:

see ith basic state 
with probability pi

55


