

1

Extended Church-Turing Thesis

- the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis everything we can compute in time $t(n)$ on a physical computer can be computed on a Turing Machine in time $t(n)^{\mathrm{O}(1)}$ (polynomial slowdown)

- randomized computation challenges this belief March 4, 2024

CS21 Lecture 25

3

Communication complexity

Theorem: no deterministic protocol can compute EQ(x, y) while exchanging fewer than $n+1$ bits.

- Proof:
- "input matrix":

Randomness in computation

- Example of the power of randomness
- Randomized complexity classes

March 4, 2024
CS21 Lecture 25

4

Communication complexity

- Can we do better?
- deterministic protocol?
- probabilistic protocol?
- at each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
- required to output $f(x, y)$ with high probability over all coin tosses

Communication complexity

- protocol for EQ employing randomness?
- Alice picks random prime p in $\left\{1 \ldots 4 n^{2}\right\}$, sends:
- p
- (x mod p)
- Bob sends:
- (y mod p)
- players output 1 if and only if:
$(x \bmod p)=(y \bmod p)$

[^0]CS21 Lecture 25

7

Communication complexity

two parties: Alice and Bob
function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$
Alice holds $x \in\{0,1\}^{n} ;$ Bob holds $y \in\{0,1\}^{n}$

- Goal: compute $f(x, y)$ while communicating as few bits as possible between Alice and Bob

Example: $E Q(x, y)=1$ iff $x=y$

- Deterministic protocol: no fewer than $\mathrm{n}+1$ bits
- Randomized protocol: O(log n) bits

March 4, 2024
CS21 Lecture 25
9

Randomized complexity classes

- model: probabilistic Turing Machine
- deterministic TM with additional read-only tape containing "coin flips"
input tape

read/write head control
read head

Communication complexity

- O(logn) bits exchanged
- if $x=y$, always correct
- if $x \neq y$, incorrect if and only if:
p divides $|x-y|$
- \# primes in range is $\geq 2 n$
- \# primes dividing $|x-y|$ is $\leq n$
- probability incorrect $\leq 1 / 2$

Randomness gives an exponential advantage!!

March 4, 2024
CS21 Lecture 25

8

Extended Church-Turing Thesis

- Common to insert "probabilistic":

The "extended" Church-Turing Thesis
everything we can compute in time $t(n)$ on a physical computer can be computed on a probabilistic Turing Machine in time $\mathrm{t}(\mathrm{n})^{\mathrm{O}(1)}$ (polynomial slowdown)

Randomized complexity classes

- RP (Random Polynomial-time)
$-L \in R P$ if there is a p.p.t. TM M:
$x \in L \rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 1 / 2$
$x \notin L \rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $]=1$
- coRP (complement of Random Polynomial-time)
$-L \in \operatorname{coRP}$ if there is a p.p.t. TM M:
$x \in L \rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $]=1$
$x \notin L \rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 1 / 2$

March 4, 2024
"p.p.t" = probabilistic polynomial time
cs21 Lecture 25

12

13

- from definitions: $\mathrm{ZPP} \subseteq \mathrm{RP}, \operatorname{coRP} \subseteq \mathrm{BPP}$

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as arithmetic formula (fan-out 1):
- multiplication (fan-in 2)
- addition (fan-in 2)
- negation (fan-in 1)

variables take values in finite field F

Randomized complexity classes

These classes may capture "efficiently computable" better than \mathbf{P}.

One more important class:

- ZPP (Zero-error Probabilistic Poly-time) - ZPP = RP \cap coRP
- $\operatorname{Pr}_{y}[M(x, y)$ outputs "fail" $] \leq 1 / 2$
- otherwise outputs correct answer

Relationship to other classes

- all these classes contain \mathbf{P}
- they can simply ignore the tape with coin flips
- all are in PSPACE
- can exhaustively try all strings y
- count accepts/rejects; compute probability
- $\mathbf{R P} \subseteq \mathbf{N P}$ (and coRP $\subseteq \mathbf{c o N P}$)
- multitude of accepting computations
- NP requires only one

Polynomial identity testing

- Question: Is p identically zero?
-i.e., is $p(\mathbf{x})=0$ for all $\mathbf{x} \in \mathrm{F}^{\mathrm{n}}$
- (assume |F| larger than degree...)
- "polynomial identity testing" because given two polynomials p, q, we can check the identity $p \equiv q$ by checking if $(p-q) \equiv 0$

Polynomial identity testing

- try all $|\mathbf{F}|^{n}$ inputs?
- may be exponentially many
- multiply out symbolically, check that all coefficients are zero?
- may be exponentially many coefficients
- Best known deterministic algorithm places in EXP

March 4, 2024
CS21 Lecture 25
19
19

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over field \mathbf{F}
- Is p identically zero?

- Note: degree d is at most the size of input

March 4, 2024
CS21 Lecture 25
21
21

Randomized complexity classes

- We have shown:
-Polynomial Identity Testing is in coRP
- note: no sub-exponential time deterministic algorithm know

Polynomial identity testing

Lemma (Schwartz-Zippel): Let
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
be a total degree d polynomial over a field F and let S be any subset of F. Then if p is not identically 0 ,

$$
\operatorname{Pr}_{r_{1}, r_{2}, \ldots, r_{n} \in S}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \leq d /|S| .
$$

Polynomial identity testing

- randomized algorithm: pick a subset $S \subseteq \mathbf{F}$ of size 2d
- pick $r_{1}, r_{2}, \ldots, r_{n}$ from S uniformly at random
-if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$, answer "yes"
- if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right) \neq 0$, answer "no"
- if p identically zero, never wrong
- if not, Schwartz-Zippel ensures probability of error at most $1 / 2$

March 4, 2024
CS21 Lecture 25
22
22

Randomized complexity classes

- How powerful is randomized computation?
- We have seen an example of a problem in BPP
that we only know how to solve deterministically in EXP.

Is randomness a panacea for intractability?

[^0]: March 4, 2024

