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» Challenges to Extended Church-Turing
—randomized computation
— quantum computation
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Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be
computed on a Turing Machine in time
t(n)°(" (polynomial slowdown)

» randomized computation challenges this belief
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Randomness in computation

» Example of the power of randomness

* Randomized complexity classes
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Communication complexity

Theorem: no deterministic protocol can
compute EQ(x, y) while exchanging fewer
than n+1 bits.

Y ={01}n

X= {0 j

fixy) —1

* Proof:
— “input matrix”:

March 4, 2024 CS21 Lecture 25 5

Communication complexity

« Can we do better?
— deterministic protocol?
— probabilistic protocol?
« at each step: one party sends bits that are
a function of held input and received bits so
far and the result of some coin tosses
* required to output f(x, y) with high
probability over all coin tosses
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Communication complexity

+ protocol for EQ employing randomness?

— Alice picks random prime p in {1...4n%}, sends:
°p
* (x mod p)

— Bob sends:
* (y mod p)

— players output 1 if and only if:

(x mod p) = (y mod p)
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Communication complexity

— O(log n) bits exchanged

—if x =y, always correct

—if x # y, incorrect if and only if:
p divides |[x —y|

—# primes in range is = 2n

—# primes dividing [x —y| is<n

— probability incorrect < 1/2

Randomness gives an exponential advantage!!
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Communication complexity

two parties: Alice and Bob
function f:{0,1}" x {0,1}" - {0,1}
Alice holds x €{0,1}"; Bob holds y € {0,1}"

* Goal: compute f(x, y) while communicating as
few bits as possible between Alice and Bob

Example: EQ(x,y) =1iffx=y
+ Deterministic protocol: no fewer than n+1 bits
+ Randomized protocol: O(log n) bits
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Extended Church-Turing Thesis

* Common to insert “probabilistic”:

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be
computed on a probabilistic Turing
Machine in time t(n)°(") (polynomial
slowdown)
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Randomized complexity classes

» model: probabilistic Turing Machine

— deterministic TM with additional read-only
tape containing “coin flips”

input tape
lo[1]#]ofo[+[4]*]o[4]ofo[ [ ] ---
finite ]
control read/write head
- read head

[o][+]ofo[4]+[*]o[1]oJo[ T [] ---
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Randomized complexity classes

* RP (Random Polynomial-time)
—LeRPifthereisap.p.t. TM M:
x € L —» Pry[M(x,y) accepts] = /2
x € L = Pry[M(x,y) rejects] = 1

* coRP (complement of Random Polynomial-time)
—L € coRP if there is a p.p.t. TM M:
X € L = Pry[M(x,y) accepts] = 1
x € L - Pry[M(x,y) rejects] 2 2
“p.p.t’ = probabilistic polynomial time
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Randomized complexity classes

* BPP (Bounded-error Probabilistic Poly-time)
—L € BPP if thereis a p.p.t. TM M:
x € L = Pry[M(x,y) accepts] = 2/3
x & L - Pr,[M(x,y) rejects] = 2/3
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Randomized complexity classes

These classes may capture “efficiently
computable” better than P.

One more important class:

* ZPP (Zero-error Probabilistic Poly-time)
—ZPP =RP N coRP
— Pry[M(x,y) outputs “fail’] < %2
— otherwise outputs correct answer
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RP,coRP, BPP

ZPP
coRP
P RP5pp PSPACE

EXP

« from definitions: ZPP € RP, coRP < BPP
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Relationship to other classes

« all these classes contain P

— they can simply ignore the tape with coin flips
« all are in PSPACE

— can exhaustively try all strings y

— count accepts/rejects; compute probability
* RP € NP (and coRP < coNP)

— multitude of accepting computations

— NP requires only one
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Polynomial identity testing

» Given: polynomial p(x4, Xo, ..., X,) as
arithmetic formula (fan-out 1):
*
« multiplication (fan-in 2) NG
_ *
+ addition (fan-in 2) AN
. 1 - * + -
negation (fan-in 1) o~ o~ 1
X1 X2 X3 .. Xp
variables take values in finite field F
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Polynomial identity testing

* Question: Is p identically zero?
—i.e.,isp(x)=0forall x e F"
— (assume |F| larger than degree...)

* “polynomial identity testing” because given
two polynomials p, q, we can check the
identity p = q by checkingif (p —q) =0
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Polynomial identity testing

* try all |[F|"inputs?
— may be exponentially many

« multiply out symbolically, check that all
coefficients are zero?
—may be exponentially many coefficients

» Best known deterministic algorithm places
in EXP
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let

P(X1, X2, «.y Xp)
be a total degree d polynomial over a field
F and let S be any subset of F. Then if p is
not identically O,

Pre iy el P(T1, T2, ., 1) = 0] < d/|S).
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Polynomial identity testing

+ Given: polynomial p(x4, Xa, ..., Xp) Over

field F *
N
« Is p identically zero? - *
*/ TN
NG
X1 X2 X3 .. Xp

* Note: degree d is at most the size of input
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Randomized complexity classes

* We have shown:
—Polynomial Identity Testing is in coRP

—note: no sub-exponential time
deterministic algorithm know
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Polynomial identity testing

* randomized algorithm: pick a subset S € F
of size 2d
— pick rq, ra, ..., rafrom S uniformly at random
—if p(rq, r2, ..., ) = 0, answer “yes”
—ifp(r1, r2, ..., ra) # 0, answer “no”

if p identically zero, never wrong

« if not, Schwartz-Zippel ensures probability
of error at most %
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Randomized complexity classes

* How powerful is randomized computation?
* We have seen an example of a problem in
BPP

that we only know how to solve
deterministically in EXP.

Is randomness a panacea
for intractability?
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