

1

| QSAT is PSPACE-complete |  |  |
| :---: | :---: | :---: |
| - given TM M deciding L $\in$ PSPACE; input $x$ <br> $-2^{n^{k}}$ possible configurations <br> - single START configuration <br> - assume single ACCEPT configuration |  |  |
| $-\mathrm{def}$ | $\Rightarrow$ configurat ation X in at |  |
| March 1.2024 | CS22 Lectur 24 | 3 |

3

## QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.

- Proof:
- in PSPACE: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ?
- " $\exists x_{1}$ ": for both $x_{1}=0, x_{1}=1$, recursively solve
$\forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ?
- if at least one "yes", return "yes"; else return "no"
" $\forall x_{1}$ ": for both $x_{1}=0, x_{1}=1$, recursively solve

- if at least one "no", return "no"; else return "yes" - base case: evaluating a $3-C N F$ expression
- poly(n) recursion depth
- poly(n) bits of state at each level

March $1.2024 \quad$ cs21 Leecura 24
2


QSAT is PSPACE-complete

5

## QSAT is PSPACE-complete

$\operatorname{REACH}(\mathrm{X}, \mathrm{Y}, \mathrm{i}) \Leftrightarrow$ configuration Y reachable from configuration $X$ in at most $2^{i}$ steps.

- Goal: produce 3-CNF $\varphi\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{m}}\right)$ such that
$\exists w_{1} \forall \mathrm{w}_{2} \ldots \exists \mathrm{w}_{\mathrm{m}} \varphi\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}\right)$
$\Leftrightarrow$ REACH(START, ACCEPT, $\left.n^{k}\right)$
mach 1, 2024
CS21 Lecture 24
4



## QSAT is PSPACE-complete

- Key observation:
$\operatorname{REACH}(\mathrm{A}, \mathrm{B}, \mathrm{i}+1)$ $\stackrel{ }{\Leftrightarrow}$
$\exists Z[\operatorname{REACH}(A, Z, i) \wedge \operatorname{REACH}(Z, B, i)]$
- cannot define $\Psi_{i+1}\left(\mathrm{~A} ; \mathrm{B} ; \mathrm{Z}, \mathrm{W}, \mathrm{W}^{\prime}\right)$ to be
$\exists Z\left[\exists w_{1} \forall w_{2} \ldots \psi_{1}(A, Z, W) \wedge \exists w_{1}^{\prime} \forall w_{2}^{\prime} \ldots \psi\left(Z, B, W^{\prime}\right)\right]$ (why?)

Mach 1, 2024
Cs21 Lectur 24
7

## QSAT is PSPACE-complete

$\Psi_{\circ}(A, B)=$ true iff $A=B$ or $A$ yields $B$ in 1 step
$\Psi_{i+1}(A ; B ; Z, X, Y, W)=$
$\exists Z \forall X \forall Y[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow$
$\left.\exists w_{1} \forall w_{2} \ldots \Psi_{i}(X, Y, W)\right]$
$-\left|\psi_{0}\right|=O\left(n^{k}\right)$
$-\left|\psi_{i+1}\right|=O\left(n^{k}\right)+\left|\psi_{i}\right|$

- total size of $\psi_{n k}$ is $O\left(n^{k}\right)^{2}=\operatorname{poly}(\mathrm{n})$
- reduction runs in polynomial time
warch 1.202 $\qquad$
9


## PSPACE and games

- General phenomenon: many 2-player games are PSPACE-complete.

$$
\begin{aligned}
& \text { - } 2 \text { players I, II } \\
& \text { alternate pick- } \\
& \text { ing edges } \\
& \text { lose when no } \\
& \text { unvisited choice }
\end{aligned}
$$

- GEOGRAPHY $=\{(\mathrm{G}, \mathrm{s}): \mathrm{G}$ is a directed graph and player I can win from node s\}
$\qquad$
$\qquad$

11

## QSAT is PSPACE-complete

Key idea: use quantifiers

- couldn't do $\Psi_{i+1}\left(A ; B ; Z, W, W^{\prime}\right)=$
$\exists Z\left[\exists w_{1} \forall w_{2} \ldots \psi_{i}(A, Z, W) \wedge \exists w_{1}{ }^{\prime} \forall w_{2}{ }^{\prime} \ldots \psi_{i}\left(Z, B, W^{\prime}\right)\right]$
- define $\Psi_{i+1}(A ; B ; Z, X, Y, W)$ to be
$\exists Z \forall X \forall Y[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow$ $\left.\exists w_{1} \forall w_{2} \ldots \psi_{i}(X, Y, W)\right]$
$-\Psi_{i}(X, Y, W)$ is preceded by quantifiers
- move to front (they don't involve $X, Y, Z, A, B$ )

March $1.2024 \quad \mathrm{CS} 21$ Lecture 24

8

## PSPACE and games

QSAT $=\{\varphi: \varphi$ is a $3-C N F$, and
$\left.\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \ldots \forall x_{n} \varphi\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)\right\}$

- Think of as 2-player game (player 1 trying to satisfy $\varphi$; player 2 adversary)
- player 1 picks truth value for $x$
- player 2 picks truth value for $x_{2}$
- player 1 picks truth value for $x_{3}$
- $\varphi \in$ QSAT iff player 1 can win no matter what player 2 does.
acch 1,2024
CS21 Locture 24 $\square$
10


## PSPACE

Theorem: GEOGRAPHY is PSPACEcomplete.

## Proof:

- in PSPACE (proof?)
- PSPACE-hard. reduction from QSAT

| Macch 1. 2024 | CS22 L Lecture 24 | 12 |
| :--- | :--- | :--- |

12



14

15

17



16

| Randomness in computation |  |
| :--- | :--- |
| - Example of the power of randomness |  |
| - Randomized complexity classes |  |
|  |  |
|  |  |
| March 1.2024 |  |

18

## Communication complexity

two parties: Alice and Bob function f: $\{0,1\}^{\mathrm{n}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$
Alice holds $x \in\{0,1\}^{n}$; Bob holds $y \in\{0,1\}^{n}$

- Goal: compute $f(x, y)$ while communicating as few bits as possible between Alice and Bob
- count number of bits exchanged (computation free)
- at each step: one party sends bits that are a function of held input and received bits so far march 1.2024 CS21 Lecture 24

19

| Communication complexity |
| :--- |
| - Can we do better? |
| - deterministic protocol? |
| - probabilistic protocol? |
| - at each step: one party sends bits that are |
| a function of held input and received bits so |
| far and the result of some coin tosses |
| - required to output $f(x, y)$ with high |
| probability over all coin tosses |

21

## Communication complexity

- simple function (equality):

$$
E Q(x, y)=1 \text { iff } x=y
$$

- simple protocol:
- Alice sends x to Bob (n bits)
- Bob sends EQ(x, y) to Alice (1 bit)
- total: $\mathrm{n}+1$ bits
- (works for any predicate f)

March 1. $2024 \quad$ cs21 Leoture 24
20

## Communication complexity

Theorem: no deterministic protocol can compute EQ(x, y) while exchanging fewer than $\mathrm{n}+1$ bits.

- Proof:
- "input matrix":


22


## Communication complexity

- B sends 1 bit depending only on y and received bit:


24



26

