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QSAT is PSPACE-complete
Theorem: QSAT is PSPACE-complete.
• Proof:

– in PSPACE:  ∃x1∀x2∃x3 … Qxn φ(x1, x2, …, xn)?
– “∃x1”: for both x1 = 0, x1 = 1, recursively solve 

∀x2∃x3 … Qxn φ(x1, x2, …, xn)?
• if at least one “yes”, return “yes”; else return “no”

– “∀x1”: for both x1 = 0, x1 = 1, recursively solve 
∃x2∀x3 … Qxn φ(x1, x2, …, xn)?

• if at least one “no”, return “no”; else return “yes”
– base case: evaluating a 3-CNF expression
– poly(n) recursion depth
– poly(n) bits of state at each level
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QSAT is PSPACE-complete
– given TM M deciding L ∈ PSPACE; input x
– 2nk possible configurations
– single START configuration
– assume single ACCEPT configuration

– define:
REACH(X, Y, i) ⇔ configuration Y reachable from 

configuration X in at most 2i steps.

3

March 1, 2024 CS21 Lecture 24 4

QSAT is PSPACE-complete
REACH(X, Y, i) ⇔ configuration Y reachable from 

configuration X in at most 2i steps.

– Goal: produce 3-CNF φ(w1,w2,w3,…,wm) such 
that 

∃w1∀w2 … ∃wm φ(w1,…,wm) 
⇔ REACH(START, ACCEPT, nk)
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QSAT is PSPACE-complete

– for i = 0, 1, … nk produce quantified Boolean 
expressions ψi(A, B, W) such that ∀A,B: 
∃w1∀w2 … ψi(A, B, W) ⇔REACH(A, B, i)

– convert ψnk to 3-CNF φ
• add variables V

– hardwire A = START, B = ACCEPT
∃w1∀w2 … ∃V φ(W, V)  ⇔ x ∈ L
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QSAT is PSPACE-complete

– ψo(A, B) = true iff 
• A = B or 
• A yields B in one step of M

…

…

STEP STEP STEP STEP

config. 
A
config. 
B

Boolean expression 
of size O(nk)
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QSAT is PSPACE-complete
– Key observation:

REACH(A, B, i+1)
⇔

∃Z[REACH(A, Z, i) ∧ REACH(Z, B, i)]

– cannot define ψi+1(A; B; Z, W, W’) to be
∃Z [∃w1∀w2 … ψi(A, Z, W) ∧ ∃w1’ ∀w2’… ψi(Z, B, W’) ]
(why?)
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QSAT is PSPACE-complete
– Key idea: use quantifiers
– couldn’t do ψi+1(A; B; Z, W, W’) = 
∃Z [∃w1∀w2 … ψi(A, Z, W) ∧ ∃w1’ ∀w2’… ψi(Z, B, W’) ]

– define ψi+1(A; B; Z, X, Y, W) to be
∃Z∀X∀Y[((X=A ∧ Y=Z) ∨ (X=Z ∧Y=B)) ⇒

∃w1∀w2 … ψi(X, Y, W)]
– ψi(X, Y, W) is preceded by quantifiers
– move to front (they don’t involve X,Y,Z,A,B)
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QSAT is PSPACE-complete
ψo(A, B) = true iff A = B or A yields B in 1 step 
ψi+1(A; B; Z, X, Y, W) =
∃Z∀X∀Y[((X=A ∧ Y=Z) ∨ (X=Z ∧Y=B)) ⇒

∃w1∀w2 … ψi(X, Y, W)]
– |ψ0| = O(nk)
– |ψi+1| = O(nk) + |ψi| 

– total size of ψnk is O(nk)2 = poly(n)
– reduction runs in polynomial time 
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PSPACE and games
QSAT = {φ : φ is a 3-CNF, and 

∃x1∀x2∃x3∀x4∃x5… ∀xn φ(x1, x2, x3, … xn) }
• Think of as 2-player game (player 1 trying 

to satisfy φ; player 2 adversary):
– player 1 picks truth value for x1

– player 2 picks truth value for x2

– player 1 picks truth value for x3…
• φ ∈QSAT iff player 1 can win no matter 

what player 2 does. 
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PSPACE and games
• General phenomenon: many 2-player 

games are PSPACE-complete.
– 2 players I, II
– alternate pick-   

ing edges
– lose when no 

unvisited choice

pasadena

athens
auckland

san 
francisco

oakland

davis

• GEOGRAPHY = {(G, s) : G is a directed 
graph and player I can win from node s}
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PSPACE
Theorem: GEOGRAPHY is PSPACE-

complete.

Proof:
– in PSPACE (proof?)

– PSPACE-hard. reduction from QSAT.
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GEOGRAPHY is PSPACE-complete

• We are reducing from the language:

QSAT = {φ : φ is a 3-CNF, and 
∃x1∀x2∃x3∀x4∃x5… ∀xn φ(x1, x2, x3, … xn) }

to the language:

GEOGRAPHY = {(G, s) : G is a directed graph 
and player I can win from node s}
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PSPACE
∃x1∀x2∃x3∀x4∃x5… ∀xn φ(x1, x2, x3, … xn)?

true false
variable 
gadget for xi C1    C2              Cm  

clause choice 
gadget

…
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PSPACE
∃x1∀x2∃x3 …(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧…∧(x1∨¬x2)

true false

true false

true false
…

x1

x2

x3

I
II

II

II

II

I

I

I

I

alternately pick truth 
assignment

pick a 
clause

I
II

I pick a true 
literal?
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Outline

• Challenges to Extended Church-Turing 
– randomized computation
– quantum computation
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Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an efficient algorithm is:

• randomized computation challenges this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n) 
on a physical computer can be 

computed on a Turing Machine in time 
t(n)O(1) (polynomial slowdown)
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Randomness in computation

• Example of the power of randomness

• Randomized complexity classes
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Communication complexity

• Goal: compute f(x, y) while communicating as 
few bits as possible between Alice and Bob

• count number of bits exchanged (computation free) 
• at each step: one party sends bits that are a 

function of held input and received bits so far

two parties: Alice and Bob
function f:{0,1}n x {0,1}n → {0,1}

Alice holds x ∈ {0,1}n; Bob holds y ∈ {0,1}n

19

March 1, 2024 CS21 Lecture 24 20

Communication complexity
• simple function (equality): 

EQ(x, y) = 1 iff x = y

• simple protocol:
– Alice sends x to Bob (n bits)
– Bob sends EQ(x, y) to Alice (1 bit)
– total: n + 1 bits
– (works for any predicate f)

20

March 1, 2024 CS21 Lecture 24 21

Communication complexity
• Can we do better?

– deterministic protocol?
– probabilistic protocol?

• at each step: one party sends bits that are 
a function of held input and received bits so 
far and the result of some coin tosses

• required to output f(x, y) with high 
probability over all coin tosses 

21

March 1, 2024 CS21 Lecture 24 22

Communication complexity
Theorem: no deterministic protocol can 

compute EQ(x, y) while exchanging fewer 
than n+1 bits.

• Proof:
– “input matrix”: 

X = {0,1}n

Y = {0,1}n

f(x,y)
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Communication complexity
– assume 1 bit sent at a time (but proof works 

for general case)
– A sends 1 bit depending only on x:

X = {0,1}n

Y = {0,1}n

inputs x causing 
A to send 1

inputs x causing 
A to send 0
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Communication complexity
– B sends 1 bit depending only on y and 

received bit:

X = {0,1}n

Y = {0,1}n

inputs y causing 
B to send 1

inputs y causing 
B to send 0
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Communication complexity
– at end of protocol involving k bits of 

communication, matrix is partitioned into at 
most 2k combinatorial rectangles

– bits sent in protocol are the same for every 
input (x, y) in given rectangle

– conclude: f(x,y) must be constant on each 
rectangle
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Communication complexity

– any partition into combinatorial rectangles with 
constant f(x,y) must have at least 2n + 1 rectangles

– protocol that exchanges ≤ n bits can only create 2n

rectangles, so must exchange at least n+1 bits.  

X = {0,1}n

Y = {0,1}n

1
1

1

1
0

0
Matrix for EQ:
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