

1

3

Quantifier characterization of coNP

- recall that a language L is in NP if and only if it is expressible as:
$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where R is a language in P.
Theorem: language L is in coNP if and only if it is expressible as:

$$
L=\left\{x\left|\forall y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where R is a language in P.
February 28, 2024

Proof interpretation of coNP

- What is a proof?
- Good formalization comes from NP:

$$
\begin{aligned}
& L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\} \text {, and } R \in P\right. \\
& \text { "proof" "short" proof "proof verifier" }
\end{aligned}
$$

- NP languages have short proofs of membership
- co-NP languages have short proofs of nonmembership
- coNP-complete languages are least likely to have short proofs of membership

coNP

- what complexity class do the following languages belong in?
- COMPOSITES $=\{\mathrm{x}$: integer x is a composite $\}$
- PRIMES $=\{x$: integer x is a prime number $\}$
- GRAPH-NONISOMORPHISM $=\{(\mathrm{G}, \mathrm{H}): \mathrm{G}$ and H are graphs that are not isomorphic\}
- EXPANSION $=\{(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \alpha>0)$: every subset $S \subseteq V$ of size at most $\mid \mathrm{V} / 2$ has at least $\alpha|\mathrm{S}|$ neighbors $\}$

February 28, 2024
CS21 Lecture 23

7

$N P \cap \operatorname{coNP}$

- Might guess NP \cap coNP = P by analogy with RE (since RE \cap coRE = DECIDABLE)
- Not believed to be true.
- A problem in NP \cap coNP not believed to be in P :
$L=\{(x, k)$: integer x has a prime factor $p<k\}$
(decision version of factoring)
February 28, 2024
CS21 Lecture 23

9

PRIMES in NP

Theorem: (Pratt 1975) PRIMES is in NP.
PRIMES $=\{x: \forall 1<y<x, y$ does not divide $x\}$

- Proof outline:
- Step 1: give " \exists " characterization of PRIMES
- Step 2: this \Rightarrow short certificate of primality
- Step 3: certificate checkable in poly time
(we will skip, because...)
Theorem: (M. Agrawal, N. Kayal, N. Saxena 2002)
PRIMES is in P.

coNP

- Picture of the way we believe things are:

February 28, 2024
CS21 Lecture 23
8
8

$N P \cap \operatorname{coNP}$

- Theorem: This language is in NP \cap coNP: $L=\{(x, k)$: integer x has a prime factor $p<k\}$

Proof:

- In NP (why?)
- In coNP (what certificate demonstrates that x has no small prime factor?)
- Use this claim: PRIMES is in NP:

PRIMES $=\{x: \forall 1<y<x, y$ does not divide $x\}$

February 28, 2024
CS21 Lecture 23
10
10

Summary

- Picture of the way we believe things are:

12

Space complexity

Definition: the space complexity of a TM M is a function

$$
f: \mathbf{N} \rightarrow \mathbf{N}
$$

where $f(n)$ is the maximum number of tape cells M scans on any input of length n.

- "M uses space $f(n)$," "M is a $f(n)$ space TM"

- NP $\subseteq P S P A C E, ~ c o N P \subseteq P S P A C E ~(p r o o f ?)$
- PSPACE \subseteq EXP (proof?)
- containments believed to be proper

February 28, 2024
CS21 Lecture 23

15

PSPACE

- A PSPACE-complete problem:
- Quantified Satisfiability:

QSAT $=\{\varphi: \varphi$ is a $3-C N F$, and

$$
\left.\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \ldots \forall x_{n} \varphi\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)\right\}
$$

- example: $\varphi=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2}\right)$
$\exists x_{1} \forall x_{2} \exists x_{3} \varphi$?
NO: $x_{1}=T$; if $x_{2}=T \ldots$; $\quad x_{1}=F$; if $x_{2}=T \ldots$
February 28, 2024
CS21 Lecture 23

Space complexity

Definition: SPACE $(t(n))=\{L$: there exists a TM M that decides L in space $O(t(n))\}$

$$
\text { PSPACE }=U_{k} \geq 1 \text { SPACE }\left(n^{k}\right)
$$

PSPACE

- A PSPACE-complete problem:
- Quantified Satisfiability:

> QSAT $=\{\varphi: \varphi$ is a 3-CNF, and $\left.\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \ldots \forall x_{n} \varphi\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)\right\}$

- example: $\varphi=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \wedge\left(\neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right)$ $\exists x_{1} \forall x_{2} \exists x_{3} \varphi$?
YES: $x_{1}=T$; if $x_{2}=T$, set $x_{3}=F$; if $x_{2}=F$, set $x_{3}=T$
February 28, 2024
CS21 Lecture 23
16

16

QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.

- Proof:
- in PSPACE: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?
- " $\exists x_{1}$ ": for both $x_{1}=0, x_{1}=1$, recursively solve $\forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) ?$
- if at least one "yes", return "yes"; else return "no"
- " $\forall x_{1}$ ": for both $x_{1}=0, x_{1}=1$, recursively solve
$\exists x_{2} \forall x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) ?$
- if at least one "no", return "no"; else return "yes"
- base case: evaluating a 3-CNF expression
- poly(n) recursion depth
- poly(n) bits of state at each leve

February 28, 2024
cs21 Lecture 23

QSAT is PSPACE-complete

- given TM M deciding $L \in$ PSPACE; input x
$-2^{n^{k}}$ possible configurations
- single START configuration
- assume single ACCEPT configuration
- define:
$\operatorname{REACH}(\mathrm{X}, \mathrm{Y}, \mathrm{i}) \Leftrightarrow$ configuration Y reachable from configuration X in at most 2 ' steps.

February 28, 2024

19

QSAT is PSPACE-complete

$\operatorname{REACH}(\mathrm{X}, \mathrm{Y}, \mathrm{i}) \Leftrightarrow$ configuration Y reachable from configuration X in at most 2^{i} steps.

- Goal: produce 3-CNF $\varphi\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)$ such that
$\exists w_{1} \forall w_{2} \ldots \exists w_{m} \varphi\left(w_{1}, \ldots, w_{m}\right)$ \Leftrightarrow REACH (START, ACCEPT, $\left.\mathrm{n}^{\mathrm{k}}\right)$

February 28, 2024
CS21 Lecture 23

QSAT is PSPACE-complete

- for $\mathrm{i}=0,1, \ldots \mathrm{n}^{\mathrm{k}}$ produce quantified Boolean expressions $\psi_{i}(A, B, W)$ such that $\forall A, B$:
$\exists w_{1} \forall w_{2} \ldots \psi_{i}(A, B, W) \Leftrightarrow R E A C H(A, B, i)$
- convert ψ_{nk} to 3-CNF φ
- add variables V
- hardwire $\mathrm{A}=$ START, $\mathrm{B}=\mathrm{ACCEPT}$
$\exists \mathrm{w}_{1} \forall \mathrm{w}_{2} \ldots \exists \mathrm{~V} \varphi(\mathrm{~W}, \mathrm{~V}) \Leftrightarrow \mathrm{x} \in \mathrm{L}$

