

1

SUBSET-SUM is NP-complete

Theorem: the following language is NPcomplete:

SUBSET-SUM $=\left\{\begin{array}{c}\text { our reduction had } \\ \text { better produce super- }\end{array}\right\}$): there is a sub polynomially large B

- Proof: (unless we want to
- Part 1: SUBSET-C prove $\mathrm{P}=\mathrm{NP}$)
- Part 2: SUBSET-SUM is NP-hard.
- reduce from?

SUBSET-SUM is NP-complete

- We are reducing from the language:

3SAT $=\{\varphi: \varphi$ is a 3-CNF formula that has a satisfying assignment $\}$
to the language:

SUBSET-SUM $=\left\{\left(S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right\}, B\right)\right.$: there is a subset of S that sums to $B\}$

February 26, 2024
CS21 Lecture 22

4

SUBSET-SUM is NP-complete

$$
\begin{aligned}
& \mathrm{X}_{1}^{\text {TRUE }}=1000 \ldots 0 \\
& \mathrm{X}_{1} \text { FALSE }=1000 \ldots 0 \\
& \mathrm{X}_{2}^{\text {TRUE }}=0100 \ldots 0 \\
& \mathrm{X}_{2}{ }^{\text {FALSE }}=0100 \ldots 0 \\
& \mathrm{x}_{\mathrm{m}}{ }^{\text {TRUE }}=0000 \ldots 1 \\
& \mathrm{x}_{\mathrm{m}}{ }^{\text {FALSE }}=0000 \ldots 1 \\
& \text { B }=1111 \ldots 1
\end{aligned}
$$

- every choice of one from each
($\mathrm{x}_{\mathrm{i}}^{\text {TRUE }}, \mathrm{x}_{\mathrm{i}}^{\text {FALSE }}$) pair sums to B
- every subset that sums to B must choose one from each $\left(x_{i}{ }^{\text {TRUE }}, x_{i}{ }^{\text {FALSE }}\right)$ pair

SUBSET-SUM is NP-complete

- $\varphi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{3}\right) \wedge \ldots \wedge(\ldots)$
- Need to force subset to "choose" at least one true literal from each clause
- Idea:
- add more digits
- one digit for each clause
- set B to force each clause to be satisfied.

February 26, 2024

7

SUBSET-SUM is NP-complete

$-B=1111 \ldots 1$? ? ?

- if clause i is satisfied sum might be 1,2 , or 3 in corresponding column.
- want? to "mean" ≥ 1
- solution: set ? = 3
- add two "filler" elements for each clause i:
- FILL1 $1_{i}=0000 \ldots 00 \ldots 010 \ldots 0$
- FILL2 $_{i}=0000 \ldots 00 \ldots 010 \ldots 0$
column for clause i
February 26, 2024
CS21 Lecture 22
9

SUBSET-SUM is NP-complete

- Reduction computable in poly-time?
- YES maps to YES?
- choose one from each ($\left.x_{i}{ }^{\text {TRUE }}, x_{i}{ }^{\text {FALSE }}\right)$ pair corresponding to a satisfying assignment
- choose 0, 1, or 2 of filler elements for each clause i depending on whether it has 3,2 , or 1 true literals
- first m digits add to 1 ; last k digits add to 3

SUBSET-SUM is NP-complete

- Reduction: m variables, k clauses
- for each variable x_{i} :
- $x_{i}^{\text {TRUE }}$ has ones in positions $k+i$ and $\{j$: clause j includes literal x_{i} \}
- $\mathrm{xi}^{\mathrm{FALSE}}$ has ones in positions $\mathrm{k}+\mathrm{i}$ and $\{j$: clause j includes literal $\neg x_{i}$ \}
- for each clause i:
- FILL1 $_{i}$ and FILL2 ${ }_{i}$ have one in position i
- bound B has 3 in positions $1 \ldots k$ and 1 in positions $k+1 \ldots k+m$

February 26, 2024
CS21 Lecture 22
10

10

SUBSET-SUM is NP-complete

- NO maps to NO ?
- at most 5 ones in each column, so no carries to worry about
- first m digits of B force subset to choose exactly one from each ($\mathrm{x}_{\mathrm{i}}^{\text {TRUE }}, \mathrm{xi}^{\text {FALSE }}$) pair
- last k digits of B require at least one true literal per clause, since can only sum to 2 using filler elements
- resulting assignment must satisfy φ

February 26, 2024
CS21 Lecture 22
12

12

13

MAX CUT

Theorem: the following language is NPcomplete:
MAX CUT $=\{(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{k})$: there is a cut $\mathrm{S} \subseteq \mathrm{V}$ with at least k edges crossing it\}

- Proof:
- Part 1: MAX CUT \in NP. Proof?
- Part 2: MAX CUT is NP-hard.
- reduce from?

February 26, 2024
CS21 Lecture 22
15

15

NAE3SAT is NP-complete

- We are reducing from the language: CIRCUIT-SAT $=\{C: C$ is a Boolean circuit for which there exists a satisfying truth assignment\}
to the language:
NAE3SAT $=\{\varphi: \varphi$ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal\}

MAX CUT

- Given graph $G=(V, E)$
- a cut is a subset $S \subseteq V$
- an edge (x, y) crosses the cut if $x \in S$ and $y \in V-S$ or $x \in V-S$ and $y \in S$
- search problem:
find cut maximizing number of edges crossing the cut

February 26, 2024
CS21 Lecture 22
14

14

Not-All-Equal 3SAT

$\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \neg \mathrm{X}_{3}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{X}_{4} \vee \mathrm{x}_{3}\right) \wedge \ldots \wedge(\ldots)$
Theorem: the following language is NPcomplete:
NAE3SAT $=\{\varphi: \varphi$ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal\}

- Proof:
- Part 1: NAE3SAT \in NP. Proof?
- Part 2: NAE3SAT is NP-hard. Reduce from?

NAE3SAT is NP-complete

- Recall reduction to 3SAT
- variables $x_{1}, x_{2}, \ldots, x_{n}$, gates $g_{1}, g_{2}, \ldots, g_{m}$

NAE3SAT is NP-complete

- Recall reduction to 3SAT
- variables $x_{1}, x_{2}, \ldots, x_{n}$, gates $g_{1}, g_{2}, \ldots, g_{m}$ - produce clauses:
$\mathrm{V}_{\mathrm{z}} \quad \square$ $\cdot\left(\neg z_{1} \vee g_{i} \vee w\right)$
$z_{1} \quad z_{2}$
$\cdot\left(\neg z_{2} \vee g_{i} \vee w\right)$
$\cdot\left(\neg g_{i} \vee z_{1} \vee z_{2}\right)$

- $\left(\neg g_{\mathrm{i}} \vee \mathrm{z}_{1} \vee \mathrm{w}\right)$

($\left.\mathrm{g}_{1} \vee \mathrm{z}_{1} \vee w\right)$
$\begin{array}{ll}Z_{1} & Z_{2}\end{array}$
$\cdot\left(\neg z_{1} \vee \neg z_{2} \vee g\right)$ output gate g_{m} :
- $\left(g_{m} \vee w\right)$

February 26, 2024
CS21 Lecture 22
19

19

NAE3SAT is NP-complete

- NO maps to NO
- $\left(\neg z_{1} \vee g_{i} \vee w\right)$
- given NAE assignment A
- $\left(\neg z_{2} \vee g_{i} \vee w\right)$
- complement A^{\prime} is a NAE assignment
$\cdot\left(\neg g_{i} \vee z_{1} \vee z_{2}\right)$
- $\left(\neg g_{i} \vee z_{1} \vee w\right)$
- A or A' has w = FALSE
- must have TRUE BLUE variable in every clause
- we know this implies C satisfiable
- $\left(\neg g_{i} \vee z_{2} \vee w\right)$
- $\left(\neg z_{1} \vee \neg z_{2} \vee g_{i}\right)$
- $\left(g_{i} \vee z \vee w\right)$
- $\left(\neg z \vee \neg g_{i} \vee w\right)$
- $\left(g_{m} \vee w\right)$

CS21 Lecture 22

MAX CUT

- Given graph $G=(V, E)$
- a cut is a subset $S \subseteq V$
- an edge (x, y) crosses the cut if $x \in S$ and $y \in V-S$ or $x \in V-S$ and $y \in S$
- search problem:
find cut maximizing number of edges crossing the cut

MAX CUT

Theorem: the following language is NP-
complete:
MAX CUT $=\{(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{k})$: there is a cut $\mathrm{S} \subseteq \mathrm{V}$ with at least k edges crossing it $\}$

- Proof:
- Part 1: MAX CUT \in NP. Proof?
- Part 2: MAX CUT is NP-hard.
- reduce from?

MAX CUT is NP-complete

- We are reducing from the language:

NAE3SAT $=\{\varphi: \varphi$ is a 3-CNF formula for which there exists a truth assignment in which every clause has at least 1 true literal and at least 1 false literal\}
to the language:

MAX CUT $=\{(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{k})$: there is a cut $\mathrm{S} \subseteq \mathrm{V}$ with at least k edges crossing it\}

February 26, 2024
CS21 Lecture 22
25

25

MAX CUT is NP-complete

- if cut selects TRUE literals, each clause contributes 2 if NAE, and < 2 otherwise
- need to penalize cuts that correspond to inconsistent truth assignments
- add n_{i} parallel edges from x_{i} to $\neg x_{i}\left(n_{i}=\#\right.$ occurrences)
(repeat variable in 2-clause to make 3-clause for this calculation)
CS21 Lecture 22
27
27

MAX CUT is NP-complete

- The reduction:
- given instance of NAE3SAT (n nodes, m clauses):
$\left(\mathrm{X}_{1} \vee \mathrm{X}_{2} \vee \neg \mathrm{X}_{3}\right) \wedge\left(\neg \mathrm{X}_{1} \vee \mathrm{X}_{4} \vee \mathrm{X}_{5}\right) \wedge \ldots \wedge\left(\neg \mathrm{X}_{2} \vee \mathrm{X}_{3} \vee \mathrm{X}_{3}\right)$
- produce graph $G=(V, E)$ with node for each literal

February 26, 2024
CS21 Lecture 22
26
26

MAX CUT is NP-complete

- triangle for each 3-clause
- parallel edges for each 2clause
- n_{i} parallel edges from x_{i} to $\neg x_{i}$ - set $\mathrm{k}=5 \mathrm{~m}$
- YES maps to YES
- take cut to be TRUE literals in a NAE truth assignment
- contribution from clause gadgets: $2 m$
- contribution from ($\mathrm{x}_{\mathrm{i}}, \neg \mathrm{x}_{\mathrm{i}}$) parallel edges: 3 m

MAX CUT is NP-complete

Claim: if cut has $\mathrm{x}_{\mathrm{i}}, \neg \mathrm{x}_{\mathrm{i}}$ on same side, then can move one to opposite side without decreasing \# edges crossing cut

- Proof

coNP

- Is NP closed under complement?

31

coNP		
- canonical coNP-complete language:```UNSAT = {\varphi : \varphi is an unsatisfiable 3-CNF formula} - proof?```		

33

coNP

- language L is in coNP iff its complement (co-L) is in NP
- it is believed that $N P \neq$ coNP
- note: $\mathrm{P}=\mathrm{NP}$ implies NP = coNP - proving NP \neq coNP would prove $\mathrm{P} \neq \mathrm{NP}$ - another major open problem...

34

