CS21 Decidability and Tractability

Lecture 20
February 21, 2024

Outline

- NP-complete problems: independent set, vertex cover, clique...
- NP-complete problems: Hamilton path and cycle,Traveling Salesperson Problem
- NP-complete problems: Subset Sum
- NP-complete problems: NAE-3-SAT, max cut

Search vs. Decision

- Definition: given a graph $G=(V, E)$, an independent set in G is a subset $\mathrm{V} \subseteq \mathrm{V}$ such that for all $u, w \in V^{\prime}(u, w) \notin E$
- A problem:
given G, find the largest independent set
- This is called a search problem
- searching for optimal object of some type
- comes up frequently

Search vs. Decision

- We want to talk about languages (or decision problems)
- Most search problems have a natural, related decision problem by adding a bound " k "; for example:
- search problem: given G, find the largest independent set
- decision problem: given (G, k), is there an independent set of size at least k

Ind. Set is NP-complete

Theorem: the following language is NPcomplete:

$$
\text { IS }=\{(G, k): G \text { has an IS of size } \geq k\} .
$$

- Proof:
- Part 1: IS \in NP. Proof?
- Part 2: IS is NP-hard.
- reduce from 3-SAT

Ind. Set is NP-complete

- We are reducing from the language:

3SAT $=\{\varphi: \varphi$ is a 3-CNF formula that has a satisfying assignment $\}$
to the language:

$$
\text { IS }=\{(G, k): G \text { has an IS of size } \geq k\} .
$$

Ind. Set is NP-complete

The reduction f: given

$$
\varphi=(x \vee y \vee \neg z) \wedge(\neg x \vee w \vee z) \wedge \ldots \wedge(\ldots)
$$

we produce graph G_{φ} :

- one triangle for each of m clauses
- edge between every pair of contradictory literals
- set k= m

Ind. Set is NP-complete

$\varphi=(x \vee y \vee \neg z) \wedge(\neg x \vee w \vee z) \wedge \ldots \wedge(\ldots)$
$\mathrm{f}(\varphi)=$
(G, \# clauses)

- YES maps to YES?
- 1 true literal per clause in satisfying assign. A
- choose corresponding vertices (1 per triangle)
- IS, since no contradictory literals in A

Ind. Set is NP-complete

$$
\varphi=(x \vee y \vee \neg z) \wedge(\neg x \vee w \vee z) \wedge \ldots \wedge(\ldots)
$$

$$
f(\varphi)=
$$

(G, \# clauses)

- IS can have at most 1 vertex per triangle
- IS of size \geq \# clauses must have exactly 1 per
- since IS, no contradictory vertices
- can produce satisfying assignment by setting these literals to true

Vertex cover

- Definition: given a graph $G=(V, E), a$ vertex cover in G is a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that for all $(u, w) \in E, u \in V^{\prime}$ or $w \in V^{\prime}$
- A search problem: given G, find the smallest vertex cover
- corresponding language (decision problem):

$$
V C=\{(G, k): G \text { has a } V C \text { of size } \leq k\} .
$$

Vertex Cover is NP-complete

Theorem: the following language is NPcomplete:

$$
V C=\{(G, k): G \text { has a } V C \text { of size } \leq k\} .
$$

- Proof:
- Part 1: VC \in NP. Proof?
- Part 2: VC is NP-hard.
- reduce from?

Vertex Cover is NP-complete

- We are reducing from the language:

$$
\text { IS }=\{(G, k): G \text { has an IS of size } \geq k\}
$$

to the language:

$$
V C=\{(G, k): G \text { has a VC of size } \leq k\} .
$$

Vertex Cover is NP-complete

- How are IS, VC related?
- Given a graph $G=(V, E)$ with n nodes
- if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ is an independent set of size k
- then V - V ' is a vertex cover of size $\mathrm{n}-\mathrm{k}$
- Proof:
- suppose not. Then there is some edge with neither endpoint in $\mathrm{V}-\mathrm{V}^{\prime}$. But then both endpoints are in V'. contradiction.

Vertex Cover is NP-complete

- How are IS, VC related?
- Given a graph $G=(V, E)$ with n nodes
- if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ is a vertex cover of size k
- then $\mathrm{V}-\mathrm{V}$ ' is an independent set of size $\mathrm{n}-\mathrm{k}$
- Proof:
- suppose not. Then there is some edge with both endpoints in $\mathrm{V}-\mathrm{V}$ '. But then neither endpoint is in V^{\prime}. contradiction.

Vertex Cover is NP-complete

The reduction:

- given an instance of IS: (G, k) f produces the pair (G, n-k)
- f poly-time computable?
- YES maps to YES?
- IS of size $\geq k$ in $G \Rightarrow V C$ of size $\leq n-k$ in G
- NO maps to NO?
-VC of size $\leq n-k$ in $G \Rightarrow I S$ of size $\geq k$ in G

Clique

- Definition: given a graph $G=(V, E)$, a clique in G is a subset V ' $\subseteq \mathrm{V}$ such that for all $u, v \in V^{\prime},(u, v) \in E$
- A search problem:

given G, find the largest clique

- corresponding language (decision problem): CLIQUE $=\{(G, k):$ G has a clique of size $\geq k\}$.

Clique is NP-complete

Theorem: the following language is NPcomplete:
CLIQUE $=\{(\mathrm{G}, \mathrm{k}): \mathrm{G}$ has a clique of size $\geq \mathrm{k}\}$

- Proof:
- Part 1: CLIQUE \in NP. Proof?
- Part 2: CLIQUE is NP-hard.
- reduce from?

Clique is NP-complete

- We are reducing from the language:

$$
\text { IS }=\{(\mathrm{G}, \mathrm{k}): \mathrm{G} \text { has an IS of size } \geq \mathrm{k}\}
$$

to the language:

CLIQUE $=\{(\mathrm{G}, \mathrm{k}): \mathrm{G}$ has a CLIQUE of size $\geq \mathrm{k}\}$.

Clique is NP-complete

- How are IS, CLIQUE related?
- Given a graph $G=(V, E)$, define its complement $G^{\prime}=\left(V, E^{\prime}=\{(u, v):(u, v) \notin E\}\right)$
- if V ' $\subseteq \mathrm{V}$ is an independent set in G of size k
- then V^{\prime} is a clique in G^{\prime} of size k
- Proof:
- Every pair of vertices $u, v \in V^{\prime}$ has no edge between them in G . Therefore they have an edge between them in G^{\prime}.

Clique is NP-complete

- How are IS, CLIQUE related?
- Given a graph $G=(V, E)$, define its complement $G^{\prime}=\left(V, E^{\prime}=\{(u, v):(u, v) \notin E\}\right)$
- if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ is a clique in G^{\prime} of size k
- then V^{\prime} is an independent set in G of size k
- Proof:
- Every pair of vertices $u, v \in V^{\prime}$ has an edge between them in G'. Therefore they have no edge between them in G .

Clique is NP-complete

The reduction:

- given an instance of IS: (G, k) f produces the pair ($\mathrm{G}^{\prime}, \mathrm{k}$)
- f poly-time computable?
- YES maps to YES?
- IS of size $\geq k$ in $G \Rightarrow$ CLIQUE of size $\geq k$ in G^{\prime}
- NO maps to NO?
- CLIQUE of size $\geq \mathrm{k}$ in $\mathrm{G}^{\prime} \Rightarrow$ IS of size $\geq \mathrm{k}$ in G

Hamilton Path

- Definition: given a directed graph $G=(V$, E), a Hamilton path in G is a directed path that touches every node exactly once.
- A language (decision problem):

HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path from s to $t\}$

HAMPATH is NP-complete

Theorem: the following language is NPcomplete:
HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path from s to $t\}$

- Proof:
- Part 1: HAMPATH \in NP. Proof?
- Part 2: HAMPATH is NP-hard.
- reduce from?

HAMPATH is NP-complete

- We are reducing from the language:

3SAT $=\{\varphi: \varphi$ is a 3-CNF formula that has a satisfying assignment \}
to the language:

HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}): \mathrm{G}$ has a Hamilton path from s to $t\}$

HAMPATH is NP-complete

- We want to construct a graph from φ with the following properties:
- a satisfying assignment to φ translates into a Hamilton Path from s to t
- a Hamilton Path from s to t can be translated into a satisfying assignment for φ
- We will build the graph up from pieces called gadgets that "simulate" the clauses and variables of φ.

HAMPATH is NP-complete

- The variable gadget (one for each x_{i}):

HAMPATH is NP-complete

" X_{1} "

- path from s to t translates into a truth assignment to $X_{1} \ldots x_{m}$
- why must the path be of this form?

HAMPATH is NP-complete

$$
\varphi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{3}\right) \wedge \ldots \wedge(\ldots)
$$

- How to ensure that all k clauses are satisfied?
- need to add nodes
- can be visited in path if the clause is satisfied
- if visited in path, implies clause is satisfied by the assignment given by path through variable gadgets

HAMPATH is NP-complete

$\varphi=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{4} \vee \mathrm{x}_{3}\right) \wedge \ldots \wedge(\ldots)$

- Clause gadget allows "detour" from "assignment path" for each true literal in clause

HAMPATH is NP-complete

- One clause gadget for each of k clauses:

February 21, 2024

HAMPATH is NP-complete

" C_{1} " $\mathrm{f}(\varphi)$ is this graph (edges
" C_{2} " to/from clause nodes not pictured)
"C C_{k} • f poly-time computable?

- \# nodes = O(km)

HAMPATH is NP-complete

HAMPATH is NP-complete

