

1

Terminology

- finite alphabet Σ : a set of symbols
- language $L \subseteq \Sigma^{*}$: subset of strings over Σ
- a machine takes an input string and either - accepts, rejects, or
- loops forever
- a machine recognizes the set of strings that lead to accept
- a machine decides a language L if it accepts $x \in L$ and rejects $x \notin L$
January 5.2024 cs21 Leocura 2
2

Finite Automata

- simple model of computation
- reads input from left to right, one symbol at a time
- maintains state: information about what seen so far ("memory")
- finite automaton has finite \# of states: cannot remember more things for longer inputs
- 2 ways to describe: by diagram, or formally
\qquad
4

5

FA operation

- Example of FA operation:

7

9

FA formal definition

A finite automaton is a 5-tuple

$$
\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)
$$

$-Q$ is a finite set called the states
$-\Sigma$ is a finite set called the alphabet
$-\delta: Q \times \Sigma \rightarrow Q$ is a function called the transition function
$-q_{0}$ is an element of Q called the start state
$-F$ is a subset of Q called the accept states

10
Formal description of FA operation
finite automaton
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
accepts a string

$$
\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \ldots \mathrm{w}_{\mathrm{n}} \in \Sigma^{\star}
$$

if \exists sequence $r_{0}, r_{1}, r_{2}, \ldots, r_{n}$ of states for which

$$
-r_{0}=q_{0}
$$

$-\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0,1,2, \ldots, n-$
$-r_{n} \in F$
January 5. $2024 \quad$ CS2 L Locture 2

12

What now?

- We have a model of computation
(Maybe this is it. Maybe everything we can do with real computers we can do with FA...)
- try to characterize the languages FAs can recognize
- investigate closure under certain operations
- show that some languages not of this type

Janaary 5.2024
cs21 Locture 2
13

Characterizing FA languages

- union " $C=(A \cup B)$ "
$(A \cup B)=\{x: x \in A$ or $x \in B$ or both $\}$
- concatenation " $\mathrm{C}=(\mathrm{A} \circ \mathrm{B})$ "
$(A \circ B)=\{x y: x \in A$ and $y \in B\}$
- star " C = A* " (note: ε always in A^{*} $A^{*}=\left\{x_{1} x_{2} x_{3} \ldots x_{k}: k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$
Januara, $5.2024 \quad$ Cs21 Lecture

15

- Need it to happen "for free": label with ε (?)
- allows construct with multiple transitions with the same label (!?)
cs21 Locurur

17

Characterizing FA languages

- We will show that the set of languages recognized by FA is closed under:
- union " $C=(A \cup B)$ "
- concatenation " $\mathrm{C}=(\mathrm{A} \circ \mathrm{B})$ "
$-\operatorname{star}$ " $\mathrm{C}=\mathrm{A}^{*}$ "
- Meaning: if A and B are languages recognized by a $F A$, then C is a language recognized by a FA

JJanary 5.2024 CS21 Lecture 2
14

Concatenation attempt

$$
(A \circ B)=\{x y: x \in A \text { and } y \in B\}
$$

What label do we put on the new transitions?
16

Nondeterministic FA

- We will make life easier by describing an additional feature (nondeterminism) that helps us to "program" FAs
- We will prove that FAs with this new feature can be simulated by ordinary FA - same spirit as programming constructs like procedures
- The concept of nondeterminism has a significant role in TCS and this course
18

Formal description of NFA operation

NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
accepts a string $w=w_{1} w_{2} w_{3} \ldots w_{n} \in \Sigma^{*}$
if w can be written (by inserting ε 's) as:
$y=y_{1} y_{2} y_{3} \ldots y_{m} \in(\Sigma \cup\{\varepsilon\})^{*}$
and \exists sequence $r_{0}, r_{1}, \ldots, r_{m}$ of states for which
$-r_{0}=q_{0}$
$-r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for $i=0,1,2, \ldots, m-1$
$-r_{m} \in F$
January $5.2024 \quad$ Cs22 Leoture 2
25

