

1

The class NP

Definition: $\operatorname{TIME}(t(n))=\{L$: there exists a TM M that decides L in time $\mathrm{O}(\mathrm{t}(\mathrm{n}))\}$

$$
P=U_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

Definition: NTIME(t(n)) $=\{\mathrm{L}$: there exists a NTM M that decides L in time $\mathrm{O}(\mathrm{t}(\mathrm{n}))\}$

$$
N P=U_{k \geq 1} N T I M E\left(n^{k}\right)
$$

Grades so far

- An idea of eventual scale:
- 2024 so far: 80.0; 84.82
- 2023 mean 80.5 ; median 81.36
- 2022: mean 80.9; median 83.6
- 2021: mean 85.7; median 86.9
- 2020: mean 81.3; median 81.8

2

- $P \subseteq$ NP (poly-time TM is a poly-time NTM)
- NP $\subseteq E X P$
- configuration tree of $n^{k-t i m e ~ N T M ~ h a s ~} \leq$ bnk n nodes
- can traverse entire tree in $O\left(b^{n k}\right)$ time
we do not know if either inclusion is proper

Poly-time verifiers

- NP $=\left\{L: L\right.$ decide $\left.\begin{array}{l}\text { "witness" or } \\ \text { "certificate" }\end{array}\right]$
- Very useful alternate definition efficiently

Theorem: language L is in NP/ if verifiable
it is expressible as:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where R is a language in P.

- poly-time $T M M_{R}$ deciding R is a "verifier"

February 16, 2024
CS21 Lecture 19

5

Poly-time verifiers

- Example: 3SAT expressible as
$3 S A T=\{\varphi: \varphi$ is a 3-CNF formula for which \exists assignment A for which $(\varphi, A) \in R\}$ $R=\{(\varphi, A): A$ is a sat. assign. for $\varphi\}$
- satisfying assignment A is a "witness" of the satisfiability of φ (it "certifies" satisfiability of φ)
$-R$ is decidable in poly-time

February 16, 2024
CS21 Lecture 19

6

7

Cook-Levin Theorem

- Gateway to proving lots of natural, important problems NP-complete is:

Theorem (Cook, Levin): 3SAT is NPcomplete.

- Recall: 3 SAT $=\{\varphi: \varphi$ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment\}

9

Boolean Circuits

- Boolean circuit C
- directed acyclic graph
- nodes: AND (^); OR (v); NOT (\neg); variables x_{i}

- C computes function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ in natural way
- identify C with function f it computes
- size = \# nodes

Poly-time verifiers

Proof: (\Rightarrow) given $L \in N P$, describe L as:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

$-L$ is decided by NTM M running in time n^{k} - define the language
$R=\{(x, y): y$ is an accepting computation history of M on input $x\}$

- check: accepting history has length $\leq|x|^{k}$ - check: M accepts x iff $\exists y,|y| \leq|x|^{k},(x, y) \in R$

8

Cook-Levin Theorem

- Proof outline
- show CIRCUIT-SAT is NP-complete

CIRCUIT-SAT $=\{\mathrm{C}: \mathrm{C}$ is a Boolean circuit for which there exists a satisfying truth assignment\}

- show 3SAT is NP-complete (reduce from CIRCUIT SAT)

Boolean Circuits

- every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ computable by a circuit of size at most $O\left(n 2^{n}\right)$
- AND of n literals for each x such that $f(x)=1$
- OR of up to 2^{n} such terms

CIRCUIT－SAT is NP－complete

Theorem：CIRCUIT－SAT is NP－complete
 CIRCUIT－SAT $=\{C: C$ is a Boolean circuit for which there exists a satisfying truth assignment\}
 Proof：
 －Part 1：need to show CIRCUIT－SAT \in NP．
 －can express CIRCUIT－SAT as：
 CIRCUIT－SAT $=\{C: C$ is a Boolean circuit for which $\exists x$ such that $(C, x) \in R\}$
 $R=\{(C, x): C$ is a Boolean circuit and $C(x)=1\}$

February 16， 2024
CS21 Lecture 19
13

13

CIRCUIT－SAT is NP－complete
－Tableau（configurations written in an array）for machine M_{R} on input $\mathrm{w}=(\mathrm{x}, \mathrm{y})$ ：

15

CIRCUIT－SAT is NP－complete

－Can build Boolean circuit STEP
－input（binary encoding of） 3 cells
－output（binary encoding of） 1 cell

a	b / q_{1}	a	－each output bit is some function of inputs
ШШШいいいいい			
STEP－can build circuit for each			
1171			－size is independen
	a		size of tableau

CIRCUIT－SAT is NP－complete

－Important observation：contents of cell in tableau determined by 3 others above it：

February 16， 2024

16

CIRCUIT－SAT is NP－complete

Tableau for M_{R} on input $\mathrm{w}=(\mathrm{x}, \mathrm{y})$

w_{1} / \mathbf{q}_{s}	\mathbf{w}_{2}	\ldots	w_{n}
w_{1}	w_{2} / q_{1}	\ldots	w_{n}

\qquad $-$ \vdots
－$|\mathrm{w}|^{\mathrm{c}}$ copies of STEP compute row i from $\mathrm{i}-1$

February 16， 2024
CS21 Lecture 19

18

19

CIRCUIT-SAT is NP-complete

- is $f(x)$ poly-time computable?
- hardcode M_{R}, k and c
- circuit has size $O(|w| 2 c) ;|w|=|(x, y)| \leq n+n^{k}$
- each component easy to describe efficiently from description of M_{R}
- YES maps to YES?
- $x \in A \Rightarrow \exists y, M_{R}$ accepts $(x, y) \Rightarrow f(x) \in$ CIRCUIT-SAT
- NO maps to NO?
- $x \notin A \Rightarrow \forall y, M_{R}$ rejects $(x, y) \Rightarrow f(x) \notin$ CIRCUIT-SAT

3SAT is NP-complete

- given a circuit C
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- AND (\wedge), OR (v), NOT (\neg) gates $g_{1}, g_{2}, \ldots, g_{m}$
- reduction $f(C)$ produces these clauses for φ on variables $x_{1}, x_{2}, \ldots, x_{n}, g_{1}, g_{2}, \ldots, g_{m}$:

CIRCUIT-SAT is NP-complete

- recall: we are reducing language A :

$$
A=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

to CIRCUIT-SAT.
$-f(x)$ produces the following circuit:

February 16, 2024

3SAT is NP-complete

Theorem: 3SAT is NP-complete
3 SAT $=\{\varphi: \varphi$ is a $3-C N F$ formula for which there exists a satisfying truth assignment\}
Proof:

- Part 1: need to show 3-SAT \in NP
- already done
- Part 2: need to show 3-SAT is NP-hard
- we will give a poly-time reduction from CIRCUIT-SAT to 3-SAT

22

3SAT is NP-complete

- given a circuit C
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- AND (\wedge), OR (v), NOT (\neg) gates $g_{1}, g_{2}, \ldots, g_{m}$ - reduction $f(C)$ produces these clauses for φ on variables $x_{1}, x_{2}, \ldots, x_{n}, g_{1}, g_{2}, \ldots, g_{m}$:

24

24

3SAT is NP-complete

- given a circuit C
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- $\operatorname{AND}(\wedge)$, OR (v), NOT (\neg) gates $g_{1}, g_{2}, \ldots, g_{m}$
- reduction $f(C)$ produces these clauses for φ on variables $x_{1}, x_{2}, \ldots, x_{n}, g_{1}, g_{2}, \ldots, g_{m}$:

February 16, 2024
cs21 Lecture 19 25

25

3SAT is NP-complete

- NO maps to NO?
- show that φ satisfiable implies C satisfiable
- satisfying assignment to φ assigns values to x-variables and g-variables
- output gate gm_{m} must be assigned 1
- every other gate must be assigned value it would take given values of its inputs.
- the assignment to the x-variables must be a satisfying assignment for C .

3SAT is NP-complete

- finally, reduction $f(C)$ produces single clause $\left(g_{m}\right)$ where g_{m} is the output gate.
$-f(C)$ computable in poly-time?
- yes, simple transformation
- YES maps to YES?
- if $C(x)=1$, then assigning x-values to x variables of φ and gate values of C when evaluating x to the g-variables of φ gives satsifying assignment.

Search vs. Decision

- Definition: given a graph $G=(V, E)$, an independent set in G is a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that for all $u, w \in V^{\prime}(u, w) \notin E$
- A problem:
given G, find the largest independent set
- This is called a search problem
- searching for optimal object of some type
- comes up frequently

February 16, 2024
CS21 Lecture 19

Search vs. Decision

- We want to talk about languages (or decision problems)
- Most search problems have a natural, related decision problem by adding a bound "k"; for example:
- search problem: given G, find the largest independent set
- decision problem: given (G, k), is there an independent set of size at least k
February 16, 2024
CS21 Lecture 19

