
1

CS21
Decidability
and
Tractability

Lecture 18
February 14,
2024

1

Time Hierarchy Theorem

Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).

• Note: P ⊆TIME(2n) ⊆ TIME(2(2n)3) ⊆ EXP
• Most natural functions (and 2n in

particular) are proper complexity functions.
We will ignore this detail in this class.

February 14, 2024 CS21 Lecture 18

2

Time Hierarchy Theorem

Theorem: for every proper complexity
function f(n) ≥ n:

TIME(f(n)) ⊆ TIME(f(2n)3).
• Proof idea:

– use diagonalization to construct a language
that is not in TIME(f(n)).

– constructed language comes with a TM that
decides it and runs in time f(2n)3.

February 14, 2024 CS21 Lecture 18

3

February 14, 2024 CS21 Lecture 18

Recall proof for Halting Problem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

4

February 14, 2024 CS21 Lecture 18

Proof of Time Hierarchy Theorem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

5

February 14, 2024 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

{ <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, <M>>, reject
• if SIM rejects <M, <M>>, accept

– D runs in time g(2n)

6

2

February 14, 2024 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.

7

February 14, 2024 CS21 Lecture 18

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides

{<M, x> : M accepts x in ≤ f(|x|) steps}
and runs in time g(n) = f(n)3.

• Proof sketch: SIM has 4 work tapes
• contents and “virtual head” positions for M’s

tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

8

February 14, 2024 CS21 Lecture 18

Proof of Time Hierarchy Theorem

• Proof sketch (continued): 4 work tapes
• contents and “virtual head” positions for M’s tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

9

February 14, 2024 CS21 Lecture 18

So far…

• We have defined the complexity classes P
(polynomial time), EXP (exponential time)

regular
languages

context free
languages

decidable
languages

P
some language

EXP

10

February 14, 2024 CS21 Lecture 18

Poly-time reductions

• Type of reduction we will use:
– “many-one” poly-time reduction (commonly)
– “mapping” poly-time reduction (book)

yes

no

yes

no

A B
reduction from
language A to
language B

f

f

11

February 14, 2024 CS21 Lecture 18

Poly-time reductions

• function f should be poly-time computable
Definition: f : Σ*→ Σ* is poly-time

computable if for some g(n) = nO(1) there
exists a g(n)-time TM Mf such that on
every w ∈ Σ*, Mf halts with f(w) on its tape.

yes

no

yes

no

A Bf

f

12

3

February 14, 2024 CS21 Lecture 18

Poly-time reductions

Definition: A ≤P B (“A reduces to B”) if there
is a poly-time computable function f such
that for all w

w ∈ A ⇔ f(w) ∈B
• as before, condition equivalent to:

– YES maps to YES and NO maps to NO
• as before, meaning is:

– B is at least as “hard” (or expressive) as A

13

February 14, 2024 CS21 Lecture 18

Poly-time reductions

Theorem: if A ≤P B and B ∈ P then A ∈ P.

Proof:
– a poly-time algorithm for deciding A:
– on input w, compute f(w) in poly-time.
– run poly-time algorithm to decide if f(w) ∈ B
– if it says “yes”, output “yes”
– if it says “no”, output “no”

14

February 14, 2024 CS21 Lecture 18

Example
• 2SAT = {CNF formulas with 2 literals per clause

for which there exists a satisfying truth
assignment}

• L = {directed graph G, and list of pairs of vertices
(u1, v1), (u2, v2),…, (uk, vk), such that there is no i
for which [ui is reachable from vi in G and vi is
reachable from ui in G]}

• We gave a poly-time reduction from 2SAT to L.
• determined that 2SAT ∈ P from fact that L ∈ P

15

February 14, 2024 CS21 Lecture 18

Hardness and completeness

• Reasonable that can efficiently transform
one problem into another.

• Surprising:
– can often find a special language L so that

every language in a given complexity class
reduces to L!

– powerful tool

16

February 14, 2024 CS21 Lecture 18

Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-hard if for
every language A ∈ C, A poly-time
reduces to L; i.e., A ≤P L.
meaning: L is at least as “hard” as anything in C

17

February 14, 2024 CS21 Lecture 18

Hardness and completeness

• Recall:
– a language L is a set of strings
– a complexity class C is a set of languages

Definition: a language L is C-complete if L
is C-hard and L ∈ C

meaning: L is a “hardest” problem in C

18

4

February 14, 2024 CS21 Lecture 18

An EXP-complete problem

• Version of ATM with a time bound:
ATMB = {<M, x, m> : M is a TM that
accepts x within at most m steps}

Theorem: ATMB is EXP-complete.

Proof:
– what do we need to show?

19

February 14, 2024 CS21 Lecture 18

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 1. Need to show ATMB ∈ EXP.
• simulate M on x for m steps; accept if simulation

accepts; reject if simulation doesn’t accept.
• running time mO(1).
• n = length of input ≥ log2m
• running time ≤ mk = 2(log m)k ≤ 2(kn)

20

February 14, 2024 CS21 Lecture 18

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– Part 2. For each language A ∈ EXP, need to
give poly-time reduction from A to ATMB.

– for a given language A ∈ EXP, we know there
is a TM MA that decides A in time g(n) ≤ 2nk

for some k.
– what should reduction f(w) produce?

21

February 14, 2024 CS21 Lecture 18

An EXP-complete problem
• ATMB = {<M, x, m> : M is a TM that accepts x

within at most m steps}
• Proof that ATMB is EXP-complete:

– f(w) = <MA, w, m> where m = 2|w|k

– is f(w) poly-time computable?
• hardcode MA and k…

– YES maps to YES?
• w ∈A ⇒ <MA, w, m> ∈ATMB

– NO maps to NO?
• w ∉ A ⇒ <MA, w, m> ∉ ATMB

22

February 14, 2024 CS21 Lecture 18

An EXP-complete problem

• A C-complete problem is a surrogate for
the entire class C.

• For example: if you can find a poly-time
algorithm for ATMB then there is
automatically a poly-time algorithm for
every problem in EXP (i.e., EXP = P).

• Can you find a poly-time alg for ATMB?

23

February 14, 2024 CS21 Lecture 18

An EXP-complete problem

• Can you find a poly-time alg for ATMB?
• NO! we showed that P ⊆ EXP.
• ATMB is not tractable (intractable).

regular
languages

context free
languages

decidable
languages

P ATMB

EXP

24

5

February 14, 2024 CS21 Lecture 18

Back to 3SAT
• Remember 3SAT ∈ EXP

3SAT = {formulas in CNF with 3 literals
per clause for which there exists a
satisfying truth assignment}

• It seems hard. Can we show it is
intractable?
– formally, can we show 3SAT is EXP-

complete?

25

February 14, 2024 CS21 Lecture 18

Back to 3SAT

• can we show 3SAT is EXP-complete?
• Don’t know how to. Believed unlikely.
• One reason: there is an important positive

feature of 3SAT that doesn’t seem to hold
for problems in EXP (e.g. ATMB):

3SAT is decidable in polynomial time by
a nondeterministic TM

26

February 14, 2024 CS21 Lecture 18

Nondeterministic TMs

• Recall: nondeterministic TM
• informally, TM with several possible next

configurations at each step
• formally, A NTM is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject) where:
– everything is the same as a TM except the

transition function:
δ:Q x Γ→ P(Q x Γ x {L, R})

27

February 14, 2024 CS21 Lecture 18

Nondeterministic TMs

visualize computation of a NTM M as a tree
Cstart • nodes are configurations

• leaves are accept/reject
configurations
• M accepts if and only if there exists
an accept leaf
• M is a decider, so no paths go on
forever
• running time is max. path length

accrej

28

February 14, 2024 CS21 Lecture 18

The class NP

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

P = ∪k ≥ 1 TIME(nk)
Definition: NTIME(t(n)) = {L : there exists a

NTM M that decides L in time O(t(n))}
NP = ∪k ≥ 1 NTIME(nk)

29

February 14, 2024 CS21 Lecture 18

NP in relation to P and EXP

• P⊆ NP (poly-time TM is a poly-time NTM)
• NP⊆ EXP

– configuration tree of nk-time NTM has ≤ bnk nodes
– can traverse entire tree in O(bnk) time
we do not know if either inclusion is proper

regular
languages

context free
languages

decidable
languages

P
EXP

NP

30

