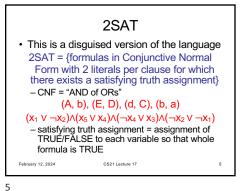


Euclid's Algorithm	
on input <x, y="">: • (1) repeat until y = 0 • (2) set x = x mod y • (3) swap x, y • x is the GCD(x, y). If x = 1, accept; otherwise reject</x,>	Claim: value of x reduced by ½ at every execution of (2) except possibly first one. Proof: • after (2) x < y
• every 2 times through loop, (x, y) each reduced by ½ • loops ≤ 2max{log2x, log2y} = O(n = -x, y>); poly time for each loop Pebruary 12, 2024 CS21 Leck	• after (3) x > y • if $x/2 \ge y$, then x mod y < y $\le x/2$ • if $x/2 < y$, then x mod y = x - y < x/2 me 17 2


2

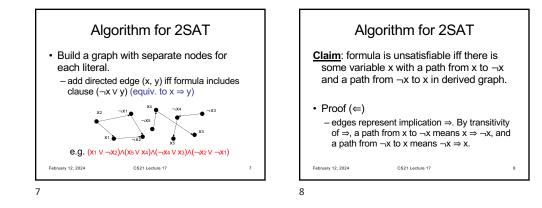
- Input: sequence of pairs of symbols e.g. (A, b), (E, D), (d, C), (b, a)
- Goal: determine if it is possible to circle at least one symbol in each pair without circling upper and lower case of same symbol.

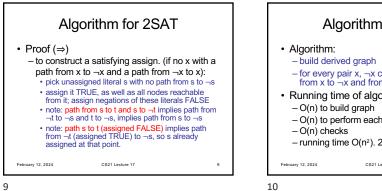
CS21 Lecture 17

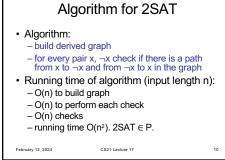
3

2SAT

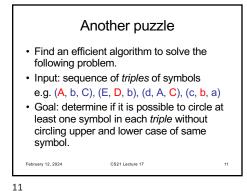
Theorem: There is a polynomial-time algorithm deciding 2SAT ("2SAT \in P").

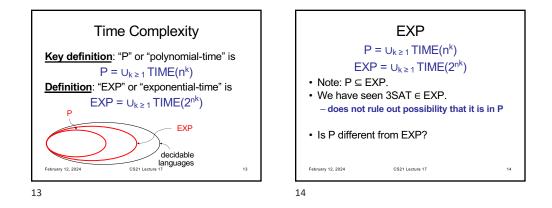

Proof: algorithm described on next slides.

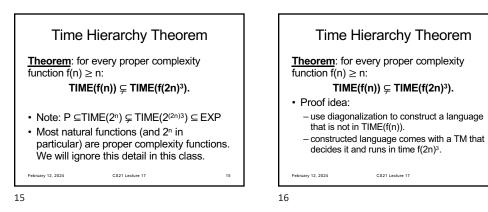

CS21 Lecture 17


February 12, 2024

6


6





· This is a disguised version of the language 3SAT = {formulas in Conjunctive Normal Form with 3 literals per clause for which there exists a satisfying truth assignment} e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a) $(X_1 \vee \neg X_2 \vee X_3) \land (X_5 \vee X_4 \vee \neg X_2) \land (\neg X_4 \vee X_1 \vee X_3) \land (\neg X_3 \vee \neg X_2 \vee \neg X_1)$ observe that this language is in TIME(2ⁿ) February 12, 2024 CS21 Lecture 17 12

12

