Lecture 15
February 7,20

Outline

» Post Correspondence Problem (skip)
* Beyond RE and co-RE
* Recursion Theorem

* On to complexity...

February 7, 2024 CS21 Lecture 15 2

Post Correspondence Problem

« many undecidable problems unrelated to
TMs and automata

« classic example: Post Correspondence
Problem
PCP = {<(x1, y1), (X2, Y2), -+, (X, YK)> :
Xi, Vi € 2* and there exists (a1, ay, ..., an) for
Which Xa,Xa,...Xa, = Ya,Yay.--Yan}

February 7, 2024 CS21 Lecture 15 3

Post Correspondence Problem

PCP = {<(x1, y1), (X2, ¥2), ..., (X«, Yk)> :
Xi, Vi € 2* and there exists (a1, ay, ..., an) for
WhiCh Xa,Xay...Xa, = Ya,Yay.--Yan}

X1
X2
Y1
X2 | X1 | Xs | X2 | X1 | X3 | Xa | Xa
Y2
Xk

X3 Yo Y1 |Y5 Y2 Y1 |Y3|Ya]|Ya

Y3 XoX1X5X2X1X3XaXs = Y2Y1Y5Y2Y1Y3YaYa
Yk

“tiles” “match”

February 7, 2024 CS21 Lecture 15 4

Post Correspondence Problem

Theorem: PCP is undecidable.

Proof:
—reduce from Ary (i.e. show Amy <, PCP)
— two step reduction makes it easier
— first, show Arm <m MPCP
(MPCP = “modified PCP”)
—next, show MPCP <, PCP

February 7, 2024 CS21 Lecture 15 5

Post Correspondence Problem

MPCP = {<(x1, y1), (X2, ¥2), .-, (Xk, Yk)> :
Xi, Vi € 2* and there exists (a1, ay, ..., an) for
which X1Xa,Xa,...Xa, = Y1Ya,Yay---Ya,}

Proof of MPCP <, PCP:

— notation: for a string u = ujuaUs...um
e xUu meansthestring *UixUy*UszxUs...*Un
e ux meansthestring Uj*Us*Us*Us. . *Um*

o xUx means the string *Uj*Uo*Us*Uy. . *Um*
February 7, 2024 CS21 Lecture 15 6

Post Correspondence Problem

Proof of MPCP <, PCP:

—given an instance (x1, y1), ..., (X, yx) of MPCP
— produce an instance of PCP:

(%1, *y1x) , (%41, Y1%), ($X2, Y2*), ..., (%X, Yier), (* 0,00)
—YES maps to YES?

* given a match in original MPCP instance, can
produce a match in the new PCP instance

—NO maps to NO?

+ given a match in the new PCP instance, can
produce a match in the original MPCP instance

February 7, 2024 CS21 Lecture 15 7

Post Correspondence Problem

—YES maps to YES?

* given a match in original MPCP instance, can
produce a match in the new PCP instance

X1 | Xq | X5 | X2 | X1 | X3 | Xq | X4
Yi[Ya|Ys|Y2 |Y1|Y3|Ya|Ya

*Xq | KXy | K X5 [KX | K Xg | KX3 | K Xg | *Xg |k O
Yix | Yax| Ysx| Yo x| Y1 | Ya| Yax|yax| O

February 7, 2024 CS21 Lecture 15 8

Post Correspondence Problem

can’'t match unless start
with this tile

duce a match in the original MPCP instance

*X1 | *Xg | X X5 | *Xo [*X1 [*XX3 |[*Xa |[* X4 |x [0

Yix | Yax| Ys x| Yax| Y1 x| Ya| Yax|yax| O

X1 | Xa | Xs | X2 | X1 | Xa | Xa | Xq | * Symbols must align

can only appear at
the end

CS21 Lecture 15 9

Y1 Ya Y5 Y2 |Y1|Y3|Ya]|Ya

February 7, 2024

Post Correspondence Problem

Proof of Aty <, MPCP:
— given instance of Aty: <M, w>
—idea: a match will record an accepting
computation history for M on input w
— start tile records starting configuration:
* add tile (#, #gow 1 Wows... W)

#

#qOW1W2. . .W,-,# #C1#

February 7, 2024 CS21 Lecture 15 "

11

8
Post Correspondence Problem
Theorem: PCP is undecidable.
Proof:
—show Atm<m MPCP
MPCP = {<(x1, y1), (X2, ¥2), ---, (Xk, YK)>
Xi, Vi € 2* and there exists (a1, ay, ..., an) for
Which X1Xa,Xay. .- Xa, = Y1Ya,Yay- - -Ya,}
—show MPCP<,PCP &
February 7, 2024 CS21 Lecture 15 10
10
Post Correspondence Problem
212 ?| _ [#C#
#agowawa.. wit | 2 || 2| | 2 HCHCH#
— tiles for head motions to the right: ga
« foralla,b € 'and all g, r € Qwith q # Qreject, | pr
if 8(q, a) = (r, b, R), add tile (qga, br)
—tiles for head motions to the left:
« for all a,b,c e I'and all g, r € Q with q # Greject,
if 8(q, a) = (r, b, L), add tile (cqa, rcb)
cga
rch
February 7, 2024 CS21 Lecture 15 12
12

Post Correspondence Problem

2107 ?| _ |#HC#
#agowawa. . wit | 2 | 2| 2 HCHCH
— tiles for copying (not near head)

« forall a € T, add tile (a, a)
— tiles for copying # marker E

- add tile (#, #)
— tiles for copying # marker and adding _ to end

of tape
- add tile (#, _#)

February 7, 2024 CS21 Lecture 15 13

Post Correspondence Problem

? ? | _ |#uaQacceptVi
#anaccep(V# 7 7 #anacceptV#UqacceptV#

—tiles for deleting symbols to left of qaccept
« for all a € T, add tile (aQaccept, Gaccept)

aqaccept

qaccept

February 7, 2024 CS21 Lecture 15 14

13

Post Correspondence Problem

14

? ? | _ |#Yaccepravit
#qacoeptav# ') 7 #QacceptaV#QacceptV#

— tiles for deleting symbols to right of Qaccept
« for alla € T, add tile (Qaccept@; Gaccept)

Qaccepta

qacoept

February 7, 2024 CS21 Lecture 15 15

Post Correspondence Problem

7 7 - #Qaccept##
#qaccept# 7 7 #Qaccept##

— tiles for completing the match
« forall a € T, add tile (Qaccept#, #)

Qaccept##
#

February 7, 2024 CS21 Lecture 15 16

15

Post Correspondence Problem

—YES maps to YES?

* by construction, if M accepts w, there is a way to
assemble the tiles to achieve this match:

HCHCHCH.. HCrlt | Where #CHCHC .. #C,#is

HCHCHC#. #C# | an accepting computation
history

—NO maps to NO?

« sketch: at any step if the “intended” next tile is not
used, then it is impossible to recover and produce
a match in the end (case analysis)

February 7, 2024 CS21 Lecture 15 17

16

Post Correspondence Problem

We have proved:
Theorem: PCP is undecidable.

by showing:
- Atm<m MPCP
—MPCP <, PCP
—conclude Aty <m PCP

February 7, 2024 CS21 Lecture 15 18

17

18

Beyond RE and co-RE

* We saw (by a countina argument) that
there is/son| Therefore, not th ot je
or co-RE. in co-RE /aH in RE

» We will prove this for’a natural language:

1, My> L(M1) = L(Mz)}

Therefore, not

* Recall:

— A is undecidable, but RE
— co-A7wm is undecidable, but coRE

February 7, 2024 CS21 Lecture 15 19

19

Beyond RE and co-RE

Proof (Atm<m EQmm)
—f(<M, w>) = <M, M>> described below:
*YES maps to YES?

<M, w> € Ary = L(My) = 2*
and L(M,) = 2*
= f(<M, W>) € EQmm

* NO maps to NO?

<M, w> & Ay = L(My) = ¢
and L(M,) =@
= f(<M, w>) € EQqy

CS21 Lecture 15 21

TM M;: on input X,
« accept
TM My: on input X,

« simulate M on input w

« accept if M accepts w

February 7, 2024

21

Summary

co-HALT

{anbr:n=0} co-RE EQmy

some language
decidable

all languages
regular

languages

context free

PCP
languages

{farbrcr:n=0} HALT

February 7, 2024 CS21 Lecture 15 23

Beyond RE and co-RE

Theorem: EQqy, is neither RE nor coRE.

Proof:

—not RE:
+ reduce from co-Amy (i.e. show co-Amy <m EQrm)
+ what should f(<M, w>) produce?
— not co-RE:
* reduce from Ay (i.e. show Ay <m EQrm)
+ what should f(<M, w>) produce?

February 7, 2024 CS21 Lecture 15 20

20

Beyond RE and co-RE

Proof (co-Amy <m EQmm)
—f(<M, w>) = <M, M>> described below:

*YES maps to YES?
<M, w> € co-Am
=>L(M)=@and L(My) =@
= f(<M, w>) € EQru

TM M;: on input X,
* reject

TM M;: on input X,
« simulate M on inputw | * NO maps to NO?

<M, w> & co-Amy
=>L(My) = and L(M,) = ¥*
= f(<M, w>) ¢ EQmu

CS21 Lecture 15 22

* accept if M accepts w

February 7, 2024

22

The Recursion Theorem

» A very useful, and non-obvious, capability
of Turing Machines:
—in the course of computation, can print out a
description of itself!
* how is this possible?
—an example of a program that prints out self:
Print two copies of the following, the 2nd one in quotes:
“Print two copies of the following, the 2nd one in quotes:”

February 7, 2024 CS21 Lecture 15 24

23

24

The Recursion Theorem

* Why is this useful?
» Example: slick proof that At undecidable
—assume TM M decides Amm

— construct machine M’ as follows:
on input X, if M on input x:

» obtain own description <M> | « accepts, then M rejects

« run M on input <M, x> <M, x>, but then M’ does not
accept!

« if M rejects, accept; if M

accepts, reject.

* rejects, then M accepts
<M, x>, but then M’ accepts!

CS21 Lecture 15 25

February 7, 2024

25

The Recursion Theorem

* Warm-up: produce a TM SELF that prints
out its own description.

» Two parts:
— Part A:
* output a description of B
* pass control to B.
— Part B:
* prepend a description of A
+ done

February 7, 2024 CS21 Lecture 15 27

27

The Recursion Theorem
Note: <A> = q()

A B
* output « read contents of tape
Recall: q(w) is a «apply q toit

description of a TM P,, that

« prepend result to tape
prints out w and then halts. prep &

— watch closely as TM AB runs:

— A runs. Tape contents:

— B runs. Tape contents: q() = <AB>
— AB is our desired machine SELF.

February 7, 2024 CS21 Lecture 15 29

The Recursion Theorem

» Lemma: there is a computable function
QX —
such that g(w) is a description of a TM P,,
that prints out w and then halts.

* Proof:
—on input w, construct TM P, that has w hard-
coded into it; output <P,>

February 7, 2024 CS21 Lecture 15 26

26
The Recursion Theorem
—PartA: Recall: q(w) is a
+ output a descriptionof B gescription of a TM
* pass control to B. P,, that prints out w
_Part B: and then halts.
* prepend a description of A
* done B
Note: <A> = q() » read contents of tape
A »apply q toit
* output « prepend* result to tape
*combine with description on tape to produce a complete TM
February 7, 2024 CS21 Lecture 15 28
28

29

The Recursion Theorem

* Lemma: there is a computable function
Q-
such that q(w) is a description of a TM P,,
that prints out w and then halts.

* Proof:
—on input w, construct TM P, that has w hard-
coded into it; output <P,>

February 7, 2024 CS21 Lecture 15 30

30

The Recursion Theorem

* Warm-up: produce a TM SELF that prints
out its own description.

* Two parts:
—Part A:
* output a description of B
* pass control to B.
— Part B:
* prepend a description of A
* done

February 7, 2024 CS21 Lecture 15 31

31

The Recursion Theorem
Note: <A> = q()

A B
* output « read contents of tape
Recall: g(w) is a « apply q toit
description ofa TM P, that |, prepend result to tape

prints out w and then halts.

— watch closely as TM AB runs:
— A runs. Tape contents:

— B runs. Tape contents: q() = <AB>
— AB is our desired machine SELF.

February 7, 2024 CS21 Lecture 15 33

33

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
¥ x¥ -
There is a TM R that computes the fn:
rIf— 3
defined as r(w) = t(w, <R>).
Proof outline: TM R has 3 parts
Part A: output description of BT
Part B: prepend description of A
Part“T: run TM T

February 7, 2024 CS21 Lecture 15 35

The Recursion Theorem

—PartA: Recall: q(w) is a
+ output a descriptionof B gescription of a TM
* pass control to B. P, that prints out w

_ Part B: and then halts.
* prepend a description of A
* done B
Note: <A> = q() « read contents of tape
A = apply q toit
* output « prepend* result to tape
*combine with description on tape to produce a complete TM
February 7, 2024 CS21 Lecture 15 32

32

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
¥ x¥ -
There is a TM R that computes the fn:
rIf 3
defined as r(w) = t(w, <R>).
» This allows “obtain own description” as
valid step in TM program

— first modify TM so that it takes an additional
input (that is own description); use at will

February 7, 2024 CS21 Lecture 15 34

34

The Recursion Theorem

Proof details: TM R has 3 parts

Part A: output description of BT
o <A> = q(<BT>)
Part B: prepend description of A

* read contents of tape <BT>
» apply qtoit q(<BT>) = <A>
* prepend to tape <ABT>

Part “T": run TM T
« 2nd argument on tape is description of R

February 7, 2024 CS21 Lecture 15 36

35

36

Summary

« full-fledged model of computation: TM
* many equivalent models
» Church-Turing Thesis

 encoding of inputs
* Universal TM

February 7, 2024 CS21 Lecture 15 37

37

Summary

« diagonalization: HALT is undecidable
* reductions: other problems undecidable
— many examples
—Rice’s Theorem
* natural problems that are not RE
* Recursion Theorem: non-obvious
capability of TMs: printing out own description
* Incompleteness Theorem

February 7, 2024 CS21 Lecture 15 39

39

Complexity

« Complexity Theory = study of what is
computationally feasible (or tractable) with
limited resources: :

— running time /

— storage space

— number of random bits
— degree of parallelism
— rounds of interaction
—others...

not in this course

February 7, 2024 CS21 Lecture 15 41

41

Summary

* classes of problems:
— decidable (“solvable by algorithms”)
—recursively enumerable (RE)
—co-RE

» counting:
—not all problems are decidable
—not all problems are RE

February 7, 2024 CS21 Lecture 15 38

38

Complexity

» So far we have classified problems by
whether they have an algorithm at all.

* In real world, we have limited resources
with which to run an algorithm:
— one resource: time
— another: storage space

* need to further classify decidable

problems according to resources they
require

February 7, 2024 CS21 Lecture 15 40

40

Worst-case analysis

» Always measure resource (e.g. running
time) in the following way:
—as a function of the input length

— value of the fn. is the maximum quantity of
resource used over all inputs of given length

— called “worst-case analysis”

* “input length” is the length of input string,
which might encode another object with a
separate notion of size

February 7, 2024 CS21 Lecture 15 42

42

