
1

CS21
Decidability and Tractability

Lecture 15
February 7, 2024

1

February 7, 2024 CS21 Lecture 15 2

Outline

• Post Correspondence Problem (skip)
• Beyond RE and co-RE
• Recursion Theorem

• On to complexity…

2

February 7, 2024 CS21 Lecture 15 3

Post Correspondence Problem

• many undecidable problems unrelated to
TMs and automata

• classic example: Post Correspondence
Problem

PCP = {<(x1, y1), (x2, y2), …, (xk, yk)> :
xi, yi ∈ Σ* and there exists (a1, a2, …, an) for

which xa1xa2…xan = ya1ya2…yan}

3

February 7, 2024 CS21 Lecture 15 4

Post Correspondence Problem
PCP = {<(x1, y1), (x2, y2), …, (xk, yk)> :

xi, yi ∈ Σ* and there exists (a1, a2, …, an) for
which xa1xa2…xan = ya1ya2…yan}

x1

y1
x2

y2

x3

y3

xk

yk
“tiles”

x2

y2

x1

y1

x5

y5

x2

y2

x1

y1

x3

y3

x4

y4

x2x1x5x2x1x3x4x4 = y2y1y5y2y1y3y4y4

x4

y4

“match”

4

February 7, 2024 CS21 Lecture 15 5

Post Correspondence Problem

Theorem: PCP is undecidable.

Proof:
– reduce from ATM (i.e. show ATM ≤m PCP)
– two step reduction makes it easier
– first, show ATM ≤m MPCP

(MPCP = “modified PCP”)
– next, show MPCP ≤m PCP

5

February 7, 2024 CS21 Lecture 15 6

Post Correspondence Problem
MPCP = {<(x1, y1), (x2, y2), …, (xk, yk)> :

xi, yi ∈ Σ* and there exists (a1, a2, …, an) for
which x1xa1xa2…xan = y1ya1ya2…yan}

Proof of MPCP ≤m PCP:
– notation: for a string u = u1u2u3…um

• ⋆u means the string ⋆u1⋆u2⋆u3⋆u4…⋆um

• u⋆ means the string u1⋆u2⋆u3⋆u4…⋆um⋆
• ⋆u⋆ means the string ⋆u1⋆u2⋆u3⋆u4…⋆um⋆

6

2

February 7, 2024 CS21 Lecture 15 7

Post Correspondence Problem
Proof of MPCP ≤m PCP:

– given an instance (x1, y1), …, (xk, yk) of MPCP
– produce an instance of PCP:

(⋆x1, ⋆y1⋆) , (⋆x1, y1⋆), (⋆x2, y2⋆), …, (⋆xk, yk⋆), (⋆ □,□)
– YES maps to YES?

• given a match in original MPCP instance, can
produce a match in the new PCP instance

– NO maps to NO?
• given a match in the new PCP instance, can

produce a match in the original MPCP instance

7

February 7, 2024 CS21 Lecture 15 8

Post Correspondence Problem
– YES maps to YES?

• given a match in original MPCP instance, can
produce a match in the new PCP instance

x1

y1

x4

y4

x5

y5

x2

y2

x1

y1

x3

y3

x4

y4

x4

y4

⋆	x1

⋆	y1⋆

⋆	x4

Y4	⋆

⋆	x5

y5 ⋆

⋆	x2

y2 ⋆

⋆	x1

y1 ⋆

⋆	x3

y3 ⋆

⋆	x4

y4 ⋆

⋆	x4

y4 ⋆
⋆ □
□

8

February 7, 2024 CS21 Lecture 15 9

Post Correspondence Problem
– NO maps to NO?

• given a match in the new PCP instance, can
produce a match in the original MPCP instance

x1

y1

x4

y4

x5

y5

x2

y2

x1

y1

x3

y3

x4

y4

x4

y4

can’t match unless start
with this tile

⋆	symbols must align

can only appear at
the end

⋆	x1

⋆	y1⋆

⋆	x4

Y4	⋆

⋆	x5

y5 ⋆

⋆	x2

y2 ⋆

⋆	x1

y1 ⋆

⋆	x3

y3 ⋆

⋆	x4

y4 ⋆

⋆	x4

y4 ⋆
⋆ □
□

9

February 7, 2024 CS21 Lecture 15 10

Post Correspondence Problem

Theorem: PCP is undecidable.
Proof:

– show ATM ≤m MPCP
MPCP = {<(x1, y1), (x2, y2), …, (xk, yk)> :

xi, yi ∈ Σ* and there exists (a1, a2, …, an) for
which x1xa1xa2…xan = y1ya1ya2…yan}

– show MPCP ≤m PCP

10

February 7, 2024 CS21 Lecture 15 11

Post Correspondence Problem

Proof of ATM ≤m MPCP:
– given instance of ATM: <M, w>
– idea: a match will record an accepting

computation history for M on input w
– start tile records starting configuration:

• add tile (#, #q0w1w2w3…wn#)

#

#q0w1w2…wn#
#

#C1#
=

11

February 7, 2024 CS21 Lecture 15 12

Post Correspondence Problem

– tiles for head motions to the right:
• for all a,b ∈ Γ and all q, r ∈Q with q ≠ qreject,

if δ(q, a) = (r, b, R), add tile (qa, br)
– tiles for head motions to the left:

• for all a,b,c ∈ Γ and all q, r ∈Q with q ≠qreject,
if δ(q, a) = (r, b, L), add tile (cqa, rcb)

#

q0w1w2…wn#

?

?

?

?

?

?
… = #C1#

#C1#C2#

qa

br

cqa

rcb

12

3

February 7, 2024 CS21 Lecture 15 13

Post Correspondence Problem

– tiles for copying (not near head)
• for all a ∈ Γ, add tile (a, a)

– tiles for copying # marker
• add tile (#, #)

– tiles for copying # marker and adding _ to end
of tape
• add tile (#, _#)

#

q0w1w2…wn#

?

?

?

?

?

?
… = #C1#

#C1#C2#

a

a#

#

#

_#

13

February 7, 2024 CS21 Lecture 15 14

Post Correspondence Problem

– tiles for deleting symbols to left of qaccept
• for all a ∈ Γ, add tile (aqaccept, qaccept)

#

#uaqacceptv#

?

?

?

?
… = #uaqacceptv#

#uaqacceptv#uqacceptv#

aqaccept

qaccept

14

February 7, 2024 CS21 Lecture 15 15

Post Correspondence Problem

– tiles for deleting symbols to right of qaccept
• for all a ∈ Γ, add tile (qaccepta, qaccept)

#

#qacceptav#

?

?

?

?
… = #qacceptav#

#qacceptav#qacceptv#

qaccepta

qaccept

15

February 7, 2024 CS21 Lecture 15 16

Post Correspondence Problem

– tiles for completing the match
• for all a ∈ Γ, add tile (qaccept##, #)

#

#qaccept#

?

?

?

?
… = #qaccept##

#qaccept##

qaccept##

#

16

February 7, 2024 CS21 Lecture 15 17

Post Correspondence Problem
– YES maps to YES?

• by construction, if M accepts w, there is a way to
assemble the tiles to achieve this match:

– NO maps to NO?
• sketch: at any step if the “intended” next tile is not

used, then it is impossible to recover and produce
a match in the end (case analysis)

#C1#C2#C3#...#Cm#

#C1#C2#C3#...#Cm#
where #C1#C2#C3#...#Cm# is
an accepting computation
history

17

February 7, 2024 CS21 Lecture 15 18

Post Correspondence Problem

We have proved:

Theorem: PCP is undecidable.

by showing:
– ATM ≤m MPCP
– MPCP ≤m PCP
– conclude ATM ≤m PCP

18

4

February 7, 2024 CS21 Lecture 15 19

Beyond RE and co-RE
• We saw (by a counting argument) that

there is some language that is neither RE
or co-RE.

• We will prove this for a natural language:
EQTM = {<M1, M2> : L(M1) = L(M2)}

• Recall:
– ATM is undecidable, but RE
– co-ATM is undecidable, but coRE

Therefore, not
in co-RE Therefore, not

in RE

19

February 7, 2024 CS21 Lecture 15 20

Beyond RE and co-RE

Theorem: EQTM is neither RE nor coRE.

Proof:
– not RE:

• reduce from co-ATM (i.e. show co-ATM ≤m EQTM)
• what should f(<M, w>) produce?

– not co-RE:
• reduce from ATM (i.e. show ATM ≤m EQTM)
• what should f(<M, w>) produce?

20

February 7, 2024 CS21 Lecture 15 21

Beyond RE and co-RE
Proof (ATM ≤m EQTM)

– f(<M, w>) = <M1, M2> described below:

TM M1: on input x,

• accept

TM M2: on input x,

• simulate M on input w

• accept if M accepts w

•YES maps to YES?

<M, w> ∈ ATM ⇒	L(M1) = Σ*
and L(M2) = Σ*
⇒ f(<M, w>) ∈ EQTM

• NO maps to NO?

<M, w> ∉ ATM ⇒	L(M1) = Σ*
and L(M2) = Ø
⇒	f(<M, w>) ∉ EQTM

21

February 7, 2024 CS21 Lecture 15 22

Beyond RE and co-RE
Proof (co-ATM ≤m EQTM)

– f(<M, w>) = <M1, M2> described below:

TM M1: on input x,

• reject

TM M2: on input x,

• simulate M on input w

• accept if M accepts w

•YES maps to YES?

<M, w> ∈ co-ATM
⇒	L(M1) = Ø and L(M2) = Ø
⇒	f(<M, w>) ∈ EQTM

• NO maps to NO?

<M, w> ∉ co-ATM
⇒	L(M1) = Ø and L(M2) = Σ*
⇒ f(<M, w>) ∉	EQTM

22

February 7, 2024 CS21 Lecture 15 23

Summary

regular
languages

context free
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE
co-HALT

PCP

EQTM

23

February 7, 2024 CS21 Lecture 15 24

The Recursion Theorem

• A very useful, and non-obvious, capability
of Turing Machines:
– in the course of computation, can print out a

description of itself!
• how is this possible?

– an example of a program that prints out self:
Print two copies of the following, the 2nd one in quotes:

“Print two copies of the following, the 2nd one in quotes:”

24

5

February 7, 2024 CS21 Lecture 15 25

The Recursion Theorem
• Why is this useful?
• Example: slick proof that ATM undecidable

– assume TM M decides ATM

– construct machine M’ as follows:
on input x,

• obtain own description <M’>

• run M on input <M’, x>

• if M rejects, accept; if M
accepts, reject.

if M’ on input x:

• accepts, then M rejects
<M’, x>, but then M’ does not
accept!
• rejects, then M accepts
<M’, x>, but then M’ accepts!

25

February 7, 2024 CS21 Lecture 15 26

The Recursion Theorem

• Lemma: there is a computable function
q:Σ* → Σ*

such that q(w) is a description of a TM Pw
that prints out w and then halts.

• Proof:
– on input w, construct TM Pw that has w hard-

coded into it; output <Pw>

26

February 7, 2024 CS21 Lecture 15 27

The Recursion Theorem

• Warm-up: produce a TM SELF that prints
out its own description.

• Two parts:
– Part A:

• output a description of B
• pass control to B.

– Part B:
• prepend a description of A
• done

27

February 7, 2024 CS21 Lecture 15 28

The Recursion Theorem
– Part A:

• output a description of B
• pass control to B.

– Part B:
• prepend a description of A
• done

A

• output

B

• read contents of tape

• apply q to it

• prepend* result to tape

Recall: q(w) is a
description of a TM
Pw that prints out w
and then halts.

Note: <A> = q()

*combine with description on tape to produce a complete TM

28

February 7, 2024 CS21 Lecture 15 29

The Recursion Theorem

– watch closely as TM AB runs:
– A runs. Tape contents:
– B runs. Tape contents: q() = <AB>
– AB is our desired machine SELF.

A

• output

B

• read contents of tape

• apply q to it

• prepend result to tape

Note: <A> = q()

Recall: q(w) is a
description of a TM Pw that
prints out w and then halts.

29

February 7, 2024 CS21 Lecture 15 30

The Recursion Theorem

• Lemma: there is a computable function
q:Σ* → Σ*

such that q(w) is a description of a TM Pw
that prints out w and then halts.

• Proof:
– on input w, construct TM Pw that has w hard-

coded into it; output <Pw>

30

6

February 7, 2024 CS21 Lecture 15 31

The Recursion Theorem

• Warm-up: produce a TM SELF that prints
out its own description.

• Two parts:
– Part A:

• output a description of B
• pass control to B.

– Part B:
• prepend a description of A
• done

31

February 7, 2024 CS21 Lecture 15 32

The Recursion Theorem
– Part A:

• output a description of B
• pass control to B.

– Part B:
• prepend a description of A
• done

A

• output

B

• read contents of tape

• apply q to it

• prepend* result to tape

Recall: q(w) is a
description of a TM
Pw that prints out w
and then halts.

Note: <A> = q()

*combine with description on tape to produce a complete TM

32

February 7, 2024 CS21 Lecture 15 33

The Recursion Theorem

– watch closely as TM AB runs:
– A runs. Tape contents:
– B runs. Tape contents: q() = <AB>
– AB is our desired machine SELF.

A

• output

B

• read contents of tape

• apply q to it

• prepend result to tape

Note: <A> = q()

Recall: q(w) is a
description of a TM Pw that
prints out w and then halts.

33

February 7, 2024 CS21 Lecture 15 34

The Recursion Theorem
Theorem: Let T be a TM that computes fn:

t: Σ* x Σ* → Σ*
There is a TM R that computes the fn:

r: Σ* → Σ*
defined as r(w) = t(w, <R>).

• This allows “obtain own description” as
valid step in TM program
– first modify TM so that it takes an additional

input (that is own description); use at will

34

February 7, 2024 CS21 Lecture 15 35

The Recursion Theorem
Theorem: Let T be a TM that computes fn:

t: Σ* x Σ* → Σ*
There is a TM R that computes the fn:

r: Σ* → Σ*
defined as r(w) = t(w, <R>).

Proof outline: TM R has 3 parts
Part A: output description of BT
Part B: prepend description of A
Part “T”: run TM T

35

February 7, 2024 CS21 Lecture 15 36

The Recursion Theorem

Proof details: TM R has 3 parts
Part A: output description of BT

• <A> = q(<BT>)
Part B: prepend description of A

• read contents of tape <BT>
• apply q to it q(<BT>) = <A>
• prepend to tape <ABT>

Part “T”: run TM T
• 2nd argument on tape is description of R

36

7

February 7, 2024 CS21 Lecture 15 37

Summary

• full-fledged model of computation: TM
• many equivalent models
• Church-Turing Thesis

• encoding of inputs
• Universal TM

37

February 7, 2024 CS21 Lecture 15 38

Summary

• classes of problems:
– decidable (“solvable by algorithms”)
– recursively enumerable (RE)
– co-RE

• counting:
– not all problems are decidable
– not all problems are RE

38

February 7, 2024 CS21 Lecture 15 39

Summary

• diagonalization: HALT is undecidable
• reductions: other problems undecidable

– many examples
– Rice’s Theorem

• natural problems that are not RE
• Recursion Theorem: non-obvious

capability of TMs: printing out own description
• Incompleteness Theorem

39

February 7, 2024 CS21 Lecture 15 40

Complexity
• So far we have classified problems by

whether they have an algorithm at all.
• In real world, we have limited resources

with which to run an algorithm:
– one resource: time
– another: storage space

• need to further classify decidable
problems according to resources they
require

40

February 7, 2024 CS21 Lecture 15 41

Complexity
• Complexity Theory = study of what is

computationally feasible (or tractable) with
limited resources:
– running time
– storage space
– number of random bits
– degree of parallelism
– rounds of interaction
– others…

main focus

not in this course

41

February 7, 2024 CS21 Lecture 15 42

Worst-case analysis
• Always measure resource (e.g. running

time) in the following way:
– as a function of the input length
– value of the fn. is the maximum quantity of

resource used over all inputs of given length
– called “worst-case analysis”

• “input length” is the length of input string,
which might encode another object with a
separate notion of size

42

