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Outline
• reductions
• many-one reductions
• undecidable problems

– computation histories
– surprising contrasts between 

decidable/undecidable
• Rice’s Theorem
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Definition of reduction
• Can you reduce co-HALT to HALT?

• We know that HALT is RE
• Does this show that co-HALT is RE?

– recall, we showed co-HALT is not RE

• our current notion of reduction cannot 
distinguish complements
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Definition of reduction
• More refined notion of reduction:

– “many-one” reduction (commonly)
– “mapping” reduction (book)
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no

yes

no

A B
reduction from 
language A to 
language B

f

f
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Definition of reduction

• function f should be computable
Definition: f : Σ*→ Σ* is computable if there 

exists a TM Mf such that on every w ∈ Σ* 
Mf halts on w with f(w) written on its tape.  
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no
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Definition of reduction
• Notation: “A many-one reduces to B” is 

written
A ≤m B

– “yes maps to yes and no maps to no” means:
w ∈ A maps to f(w) ∈B & w ∉ A maps to f(w) ∉ B

• B is at least as “hard” as A
– more accurate: B at least as “expressive” as A
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Using reductions
Definition: A ≤m B if there is a computable 

function f such that for all w 
w ∈ A ⇔ f(w) ∈ B

Theorem: if A ≤m B and B is decidable then 
A is decidable

Proof:
– decider for A: on input w, compute f(w), run 

decider for B, do whatever it does.
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Using reductions
• Main use: given language NEW, prove it is 

undecidable by showing OLD ≤m NEW, 
where OLD known to be undecidable 
– proof by contradiction
– if NEW decidable, then OLD decidable
– OLD undecidable. Contradiction.

• common to reduce in wrong direction.
• review this argument to check yourself.
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Using reductions
Theorem: if A ≤m B and B is RE then A is 

RE
Proof:

– TM for recognizing A: on input w, compute 
f(w), run TM that recognizes B, do whatever it 
does.

• Main use: given language NEW, prove it is 
not RE by showing OLD ≤m NEW, where 
OLD known to be not RE. 
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Many-one reduction example
• Showed ETM undecidable. Consider:

co-ETM = {<M> : L(M) ≠ Ø}

yes

no

yes

no

ATM co-ETM

f

f

• f(<M, w>) = <M’>
 where M’ is TM that

• on input x, if x ≠ w, 
then reject
• else simulate M on x, 
and accept if M does

• f clearly computable
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Many-one reduction example

• yes maps to yes? 
– if <M, w> ∈ ATM then f(M, w) ∈ co-ETM

• no maps to no? 
– if <M, w> ∉ ATM then f(M, w) ∉ co-ETM

yes

no

yes

no

ATM co-ETM

f

f

• f(<M, w>) = <M’>
 where M’ is TM that

• on input x, if x ≠	w, 
then reject
• else simulate M on x, 
and accept if M does

• f clearly computable
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Undecidable problems
Theorem: The language 

REGULAR = {<M>: M is a TM and L(M) is 
regular}

is undecidable.

Proof:
– reduce from ATM (i.e. show ATM ≤m REGULAR)
– what should f(<M, w>) produce? 
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Undecidable problems
Proof:

– f(<M, w>) = <M’> described below

on input x:
• if x has form 0n1n, accept
• else simulate M on w 
and accept x if M accepts

• is f computable?
• YES maps to YES?

<M, w> ∈ ATM ⇒
f(M, w) ∈	 REGULAR

• NO maps to NO?
<M, w> ∉	ATM ⇒	
f(M, w) ∉	 REGULAR
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Dec. and undec. problems
• the boundary between decidability and 

undecidability is often quite delicate
– seemingly related problems
– one decidable
– other undecidable

• We will see two examples of this 
phenomenon next.
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Computation histories
• Recall configuration of a TM: string uqv

with u,v ∈ Γ*, q ∈ Q
• The sequence of configurations M goes 

through on input w is a computation 
history of M on input w
– may be accepting, or rejecting
– reserve the term for halting computations
– nondeterministic machines may have several 

computation histories for a given input.
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Linear Bounded Automata
LBA definition: TM that is prohibited from 

moving head off right side of input.
– machine prevents such a move, just like a TM 

prevents a move off left of tape
• How many possible configurations for a 

LBA M on input w with |w| = n, m states, 
and p = |Γ| ?
– counting gives: mnpn

16

February 2, 2024 CS21 Lecture 13 17

Dec. and undec. problems
• two problems we have seen with respect 

to TMs, now regarding LBAs:
– LBA acceptance:

ALBA = {<M, w> : LBA M accepts input w}
– LBA emptiness:

ELBA = {<M> : LBA M has L(M) = Ø}
• Both decidable? both undecidable? one 

decidable?
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Dec. and undec. problems
Theorem: ALBA is decidable.
Proof:

– input <M, w> where M is a LBA
– key: only mnpn configurations
– if M hasn’t halted after this many steps, it 

must be looping forever.
– simulate M for mnpn steps
– if it halts, accept or reject accordingly, 
– else reject since it must be looping
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Dec. and undec. problems
Theorem: ELBA is undecidable.

Proof:
– reduce from co-ATM (i.e. show co-ATM ≤m ELBA)
– what should f(<M, w>) produce?
– Idea:

• produce LBA B that accepts exactly the accepting 
computation histories of M on input w
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Dec. and undec. problems
Proof:

– f(<M, w>) = <B> described below

on input x, check if x has form
#C1#C2#C3#...#Ck#

• check that C1 is the start 
configuration for M on input w
• check that Ci ⇒!Ci+1

• check that Ck is an accepting 
configuration for M

• is B an LBA? 
• is f computable?
• YES maps to YES?

<M, w> ∈	co-ATM ⇒
	f(M, w) ∈	ELBA

• NO maps to NO?
<M, w> ∉ co-ATM ⇒
	f(M, w) ∉ ELBA
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