
1

CS21
Decidability and Tractability

Lecture 12
January 31, 2024

1

January 31, 2024 CS21 Lecture 12

So far…

• This language might be an esoteric,
artificially constructed one. Do we care?

• We will show a natural undecidable L next.

regular
languages

context free
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

2

2

January 31, 2024 CS21 Lecture 12

The Halting Problem
• Definition of the “Halting Problem”:

HALT = { <M, x> : TM M halts on input x }

• HALT is recursively enumerable.
– proof?

• Is HALT decidable?

3

3

January 31, 2024 CS21 Lecture 12

The Halting Problem
Theorem: HALT is not decidable

(undecidable).

Proof:
– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts <M, <M>> then loop
• if H rejects <M, <M>> then halt

4

4

January 31, 2024 CS21 Lecture 12

The Halting Problem
Proof:

– define new TM H’: on input <M>
• if H accepts <M, <M>> then loop
• if H rejects <M, <M>> then halt

– consider H’ on input <H’>:
• if it halts, then H rejects <H’, <H’>>, which implies

it cannot halt
• if it loops, then H accepts <H’, <H’>> which implies

it must halt
– contradiction.

5

5

January 31, 2024 CS21 Lecture 12

The Halting Problem

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

6

6

2

January 31, 2024 CS21 Lecture 12

So far…

• Can we exhibit a natural language that is
non-RE?

regular
languages

context free
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

7

7

January 31, 2024 CS21 Lecture 12

RE and co-RE
• The complement of a RE language is

called a co-RE language

regular
languages

context free
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE

8

8

January 31, 2024 CS21 Lecture 12

RE and co-RE
Theorem: a language L is decidable if and

only if L is RE and L is co-RE.

Proof:
(⇒) we already know decidable implies RE
– if L is decidable, then complement of L is

decidable by flipping accept/reject.
– so L is in co-RE.

9

9

January 31, 2024 CS21 Lecture 12

RE and co-RE
Theorem: a language L is decidable if and

only if L is RE and L is co-RE.

Proof:
(⇐) we have TM M that recognizes L, and TM

M’ recognizes complement of L.
– on input x, simulate M, M’ in parallel
– if M accepts, accept; if M’ accepts, reject.

10

10

January 31, 2024 CS21 Lecture 12

A natural non-RE language
Theorem: the complement of HALT is not

recursively enumerable.

Proof:
– we know that HALT is RE
– suppose complement of HALT is RE
– then HALT is co-RE
– implies HALT is decidable. Contradiction.

11

11

January 31, 2024 CS21 Lecture 12

Summary

Main point: some problems have no
algorithms, HALT in particular.

regular
languages

context free
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE
co-HALT

12

12

3

January 31, 2024 CS21 Lecture 12 13

Reductions
• Given a new problem NEW, want to

determine if it is easy or hard
– right now, easy typically means decidable
– right now, hard typically means undecidable

• One option:
– prove from scratch that the problem is

decidable, or
– prove from scratch that the problem is

undecidable (dream up a diag. argument)

13

January 31, 2024 CS21 Lecture 12 14

Reductions
• A better option:

– to prove NEW is decidable, show how to
transform it into a known decidable problem
OLD so that solution to OLD can be used to
solve NEW.

– to prove NEW is undecidable, show how to
transform a known undecidable problem OLD
into NEW so that solution to NEW can be
used to solve OLD.

• called a reduction

14

January 31, 2024 CS21 Lecture 12 15

Reductions
Reductions are one of the most important
and widely used techniques in theoretical

Computer Science.

• especially for proving problems “hard”
– often difficult to do “from scratch”
– sometimes not known how to do from scratch
– reductions allow proof by giving an algorithm

to perform the transformation

15

January 31, 2024 CS21 Lecture 12 16

Example reduction
• Try to prove undecidable:

ATM = {<M, w> : M accepts input w}
• We know this language is undecidable:

HALT = {<M, w> : M halts on input w}
• Idea:

– suppose ATM is decidable
– show that we can use ATM to decide HALT
– conclude HALT is decidable. Contradiction.

reduction

16

January 31, 2024 CS21 Lecture 12 17

Example reduction
• How could we use procedure that decides

ATM to decide HALT?
– given input to HALT: <M, w>

• Some things we can do:
– check if <M, w> ∈ ATM

– construct another TM M’ and check if
<M’, w> ∈ATM

17

January 31, 2024 CS21 Lecture 12 18

Example reduction
• Deciding HALT using a procedure that

decides ATM (“reducing HALT to ATM”).
– on input <M, w>
– check if <M, w> ∈ATM

• if yes, the M halts on w; ACCEPT
• if no, then M either rejects w or it loops on w

– construct M’ by swapping qaccept/qreject in M
– check if <M’, w> ∈ ATM

• if yes, then M’ accepts w, so M rejects w; ACCEPT
• if no, then M neither accepts nor rejects w; REJECT

18

4

January 31, 2024 CS21 Lecture 12 19

Example reduction
• Preceding reduction proved:

Theorem: ATM is undecidable.

Proof (recap):
– suppose ATM is decidable
– we showed how to use ATM to decide HALT
– conclude HALT is decidable. Contradiction.

19

January 31, 2024 CS21 Lecture 12 20

Another example
• Try to prove undecidable:

ETM = {<M> : L(M) = Ø}
• which problem should we reduce from?

– HALT = {<M, w> : M halts on input w}
– ATM = {<M, w> : M accepts input w}

• Some things we can do:
– check if <M> ∈ ETM

– construct another TM M’ and check if
<M’> ∈ ETM

20

January 31, 2024 CS21 Lecture 12 21

Another example
• We are given input <M, w>
• We want to use a procedure that decides

ETM to decide if <M, w> ∈ATM

• Idea:
– check if <M> ∈ ETM

– if not?
– helpful if could make M reject everything

except possibly w.

21

January 31, 2024 CS21 Lecture 12 22

Another example
• Construct TM M’:

– on input x, if x ≠ w, then reject
– else simulate M on x, and accept if M does.

• on input <M, w>
– construct M’ from description of M
– check if M’ ∈ ETM

• if no, M must accept w; ACCEPT
• if yes, M cannot accept w; REJECT

Is this OK?
finite # of
states?

22

January 31, 2024 CS21 Lecture 12 23

Another example
• Preceding reduction proved:

Theorem: ETM is undecidable.

Proof (recap):
– suppose ETM is decidable
– we showed how to use ETM to decide ATM

– conclude ATM is decidable. Contradiction.

23

January 31, 2024 CS21 Lecture 12 24

Example reduction
• We proved

ATM = {<M, w> : M accepts input w}
undecidable, by reduction from

HALT = {<M, w> : M halts on input w}

• We proved
ETM = {<M> : L(M) = Ø}

undecidable by reduction from ATM

24

