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So far…

• This language might be an esoteric, 
artificially constructed one. Do we care?

• We will show a natural undecidable L next.

regular 
languages

context free 
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language
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The Halting Problem
• Definition of the “Halting Problem”: 

HALT = { <M, x> : TM M halts on input x }

• HALT is recursively enumerable.
– proof? 

• Is HALT decidable?
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The Halting Problem
Theorem: HALT is not decidable 

(undecidable).

Proof:
– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts <M, <M>> then loop
• if H rejects <M, <M>> then halt
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The Halting Problem
Proof: 

– define new TM H’: on input <M>
• if H accepts <M, <M>> then loop
• if H rejects <M, <M>> then halt

– consider H’ on input <H’>:
• if it halts, then H rejects <H’, <H’>>, which implies 

it cannot halt
• if it loops, then H accepts <H’, <H’>> which implies 

it must halt
– contradiction.
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The Halting Problem

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’ 
that cannot be in 
the table.
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So far…

• Can we exhibit a natural language that is 
non-RE?

regular 
languages

context free 
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT
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RE and co-RE
• The complement of a RE language is 

called a co-RE language

regular 
languages

context free 
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE
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RE and co-RE
Theorem: a language L is decidable if and 

only if L is RE and L is co-RE.

Proof:
(⇒) we already know decidable implies RE
– if L is decidable, then complement of L is 

decidable by flipping accept/reject.
– so L is in co-RE.
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RE and co-RE
Theorem: a language L is decidable if and 

only if L is RE and L is co-RE.

Proof:
(⇐) we have TM M that recognizes L, and TM 

M’ recognizes complement of L.
– on input x, simulate M, M’ in parallel
– if M accepts, accept; if M’ accepts, reject.
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A natural non-RE language
Theorem: the complement of HALT is not 

recursively enumerable.

Proof:
– we know that HALT is RE
– suppose complement of HALT is RE
– then HALT is co-RE
– implies HALT is decidable. Contradiction.
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Summary

Main point: some problems have no 
algorithms, HALT in particular.

regular 
languages

context free 
languages

all languages
decidable

RE

{anbn : n ≥ 0 }

{anbncn : n ≥ 0 }

some language

HALT

co-RE
co-HALT
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Reductions
• Given a new problem NEW, want to 

determine if it is easy or hard
– right now, easy typically means decidable
– right now, hard typically means undecidable

• One option:
– prove from scratch that the problem is 

decidable, or
– prove from scratch that the problem is 

undecidable (dream up a diag. argument)
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Reductions
• A better option:

– to prove NEW is decidable, show how to 
transform it into a known decidable problem 
OLD so that solution to OLD can be used to 
solve NEW.

– to prove NEW is undecidable, show how to 
transform a known undecidable problem OLD
into NEW so that solution to NEW can be 
used to solve OLD.

• called a reduction
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Reductions
Reductions are one of the most important 
and widely used techniques in theoretical 

Computer Science.

• especially for proving problems “hard”
– often difficult to do “from scratch” 
– sometimes not known how to do from scratch
– reductions allow proof by giving an algorithm

to perform the transformation
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Example reduction
• Try to prove undecidable:

ATM = {<M, w> : M accepts input w}
• We know this language is undecidable:

HALT = {<M, w> : M halts on input w}
• Idea:

– suppose ATM is decidable
– show that we can use ATM to decide HALT
– conclude HALT is decidable. Contradiction.

reduction
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Example reduction
• How could we use procedure that decides 

ATM to decide HALT?
– given input to HALT: <M, w>

• Some things we can do:
– check if <M, w> ∈ ATM

– construct another TM M’ and check if        
<M’, w> ∈ATM
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Example reduction
• Deciding HALT using a procedure that 

decides ATM (“reducing HALT to ATM”).
– on input <M, w>
– check if <M, w> ∈ATM

• if yes, the M halts on w; ACCEPT
• if no, then M either rejects w or it loops on w

– construct M’ by swapping qaccept/qreject in M
– check if <M’, w> ∈ ATM

• if yes, then M’ accepts w, so M rejects w; ACCEPT
• if no, then M neither accepts nor rejects w; REJECT

18



4

January 31, 2024 CS21 Lecture 12 19

Example reduction
• Preceding reduction proved:

Theorem: ATM is undecidable.

Proof (recap): 
– suppose ATM is decidable
– we showed how to use ATM to decide HALT
– conclude HALT is decidable. Contradiction.
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Another example
• Try to prove undecidable:

ETM = {<M> : L(M) = Ø}
• which problem should we reduce from?

– HALT = {<M, w> : M halts on input w}
– ATM = {<M, w> : M accepts input w}

• Some things we can do:
– check if <M> ∈ ETM

– construct another TM M’ and check if        
<M’> ∈ ETM
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Another example
• We are given input <M, w>
• We want to use a procedure that decides 

ETM to decide if <M, w> ∈ATM

• Idea:
– check if <M> ∈ ETM

– if not?
– helpful if could make M reject everything 

except possibly w.
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Another example
• Construct TM M’:

– on input x, if x ≠ w, then reject
– else simulate M on x, and accept if M does.

• on input <M, w>
– construct M’ from description of M
– check if M’ ∈ ETM

• if no, M must accept w; ACCEPT
• if yes, M cannot accept w; REJECT

Is this OK? 
finite # of 
states?
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Another example
• Preceding reduction proved:

Theorem: ETM is undecidable.

Proof (recap): 
– suppose ETM is decidable
– we showed how to use ETM to decide ATM

– conclude ATM is decidable. Contradiction.
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Example reduction
• We proved 

ATM = {<M, w> : M accepts input w}
undecidable, by reduction from 

HALT = {<M, w> : M halts on input w}

• We proved
ETM = {<M> : L(M) = Ø}

undecidable by reduction from ATM
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