

1

5

3

2

TM formal definition

- A TM is a 7-tuple

(Q, $\left.\Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ where:

$$
-Q \text { is a finite set called the states }
$$

$-\Sigma$ is a finite set called the input alphabet
$-\Sigma$ is a finite set called the input alphabet
$-\Gamma$ is a finite set called the tape alphabet
$-\Gamma$ is a finite set called the tape alphabet
$-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is a function called the
$-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L$
$-\mathrm{q}_{0}$ is an element of Q called the start stat
$-q_{0}$ is an element of Q called the start state
$-q_{\text {accept }}, q_{\text {reject }}$ are the accept and reject states
January 26, $2024 \quad$ CS2 L Lecture 10
4

TM configurations

- At every step in a computati- tape contents: uv a configuration determined followed by blanks
the contents of the in state q
- the contents of the tape $\quad \cdot \cdot$ reading first
- the state
symbol of
- the location of the read/write head
- next step completely determined by current configuration
- shorthand: string $u q v$ with $u, v \in \Gamma^{*}, q \in Q$

Janaary 26, 2024
Cs2 Leocture 10
6

TM configurations

- configuration C_{1} yields configuration C_{2} if TM can legally* move from C_{1} to C_{2} in 1 step - notation: $\mathrm{C}_{1} \Rightarrow \mathrm{C}_{2}$
- also: "yields in 1 step" notation: $\mathrm{C}_{1} \Rightarrow{ }^{1} \mathrm{C}_{2}$
- "yields in k steps" notation: $\mathrm{C}_{1} \Rightarrow{ }^{k} \mathrm{C}_{2}$
if there exists configurations $D_{1}, D_{2}, \ldots D_{k-1}$ for which $C_{1} \Rightarrow D_{1} \Rightarrow D_{2} \Rightarrow \ldots \Rightarrow D_{k-1} \Rightarrow C_{2}$ - also: "yields in some \# of steps" $\left(\mathrm{C}_{1} \Rightarrow \mathrm{C}_{2}\right)$
*Convention: TM halts upon entering $\mathrm{q}_{\text {accept }} \mathrm{q}_{\text {reject }}$ Sanuary 26, 2024 CS21 Lecture 10

7

TM configurations

- Formal definition of "yields":
$u, v \in \Gamma^{*}$
$a, b, c \in \Gamma$
uqjacv
if $\delta\left(q_{i}, b\right)=(q, c, L)$, and
uaqbv \Rightarrow uacqv
(qi $=$ qaccept, qrejecer
- left end: $q_{i} b v \Rightarrow q_{j} c v$ if $\delta\left(q_{i}, b\right)=\left(q_{i}, c, L\right)$
- right end: uaq same as uaq $_{i}$

January 26, $2024 \quad$ CS2 L Lecture 10

8

TM acceptance

- start configuration: $q_{0} w \quad$ (w is input)
- accepting config.: any config.with state $\mathrm{q}_{\text {accept }}$
- rejecting config.: any config. with state $\mathrm{q}_{\text {reject }}$

TM M accepts input w if there exist configurations $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$
$-C_{1}$ is start configuration of M on input w
$-C_{i} \Rightarrow C_{i+1}$ for $i=1,2,3, \ldots, k-1$
$-C_{k}$ is an accepting configuration
\qquad cs21 Loctura 10

9

Deciding and Recognizing

- TM M: input \longrightarrow machine $\longrightarrow\left\{\begin{array}{l}\cdot \text { accept } \\ \cdot \text { reject } \\ \cdot \text { loop forever }\end{array}\right.$
$-L(M)$ is the language it recognizes
- if M rejects every $x \notin L(M)$ it decides L
- set of languages recognized by some TM is called Turing-recognizable or recursively enumerable (RE)
- set of languages decided by some TM is called Turing-decidable or decidable or recursive
tamar. 26.2024

10

11

12

Nondeterministic TMs

- A important variant: nondeterministic TM
- informally, several possible next configurations at each step
- formally, a NTM is a 7-tuple

$$
\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, q_{\mathrm{accept}}, \mathrm{q}_{\mathrm{reject}}\right) \text { where: }
$$

- everything is the same as a TM except the transition function: $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})$
January 26,2024 CS22 Lecture 10

19

Nondeterministic TMs

Theorem: every NTM has an equivalent (deterministic) TM.

Proof:

- Idea: simulate NTM with a deterministic TM

January 26 , 2024

21

Nondeterministic TMs

Simulating NTM M with a deterministic TM:

- idea: breadth-first search of tree
- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt...
January 26, 2024 Cs2 L Lecture 10
23

Nondeterministic TMS
Simulating NTM M with a deterministic TM:
- idea: breadth-first search of tree
- if M accepts: we will encounter accepting
leaf and accept
- if M rejects: we will encounter all rejecting
leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will
not halt...
Jannary 26,2024

NTM acceptance

- start configuration: $q_{0} w \quad$ (w is input)
- accepting config.: any config.with state $\mathrm{q}_{\text {accept }}$
- rejecting config.: any config. with state $\mathrm{q}_{\text {reject }}$

NTM M accepts input w if there exist configurations $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$
$-\mathrm{C}_{1}$ is start configuration of M on input w
$-C_{i} \Rightarrow C_{i+1}$ for $i=1,2,3, \ldots, k-1$
$-C_{k}$ is an accepting configuration
January 26, 2024 CS21 Lecture 10
20

22

Nondeterministic TMs

Simulating NTM M with a deterministic TM:

- use a 3 tape TM:
- tape 1: input tape (read-only)
- tape 2: simulation tape (copy of M's tape at point
- tape 2: simulation tape (copy of M's tape
corresponding to some node in the tree)
- tape 3 : which node of the tree we are exploring
tape . which node od
(string in $\{1,2, \ldots . b\}^{*}$)
- Initially, tape 1 has input, others blank
- STEP 1: copy tape 1 to tape 2

January 26,2024
CS21 Lecture 10

24

25

Examples of basic operations

- Convince yourself that the following types of operations are easy to implement as part of TM "program"
(but perhaps tedious to write out...) - copying
- moving
- incrementing/decrementing
- arithmetic operations +, -, *, /

January 26, 2224
Cs2 Leoture 10
26

