CS 153 Current topics in theoretical computer science Spring 2022

Solution Set 2
Out: May 31

1. We first show, in general, that if X,Y,Z C G satisfy the triple product property with |X| =
|Y| = |Z| = n, then there is a multiplicative matching in G of cardinality at least cn?, for an
absolute constant ¢ > 0. We use the fact that the tensor (n,n,n) has a diagonal of cardinality
m = cn?. This means that there are sets S,T,U C [n]?, each of cardinality m, for which the
subset D C ([n]?)? given by

D = (S xT xU)N{((i,7), (G, k), (k,4)) : i, 5, k € [n]}

has the property that each of three canonical projections is injective.

Identify [n] with each of X, Y, Z, and define the following functions from [n]? to G:

a(z,y) = ay”'
bly,2) = yz~
c(z,x) = za!

Our multiplicative matching will be given by the set of triples:

{(a(z,y), by, 2), ¢z, 2)) : (2, 9), (y, 2), (2, 2)) € D}.

Notice that for any such triple we have a(z,y)b(y, z)c(z,2) = 1. Suppose we have three
triples, not all equal:

(a(z,y),b(y, 2),c(z,x)), (alz’,y),b(y',2"),c(z',2)), (a(z",y"),b(y",2"), c(2",2")).
Notice that
((z,9), (y,2),(z,2)) € (S x T x U)

(since a(z,y) = 2y~ determines (x,v), b(y, z2) = yz~! determines (y, z), and ¢(z,x) = 22~
determines (z,x), by the TPP) and

1

((@",y), (¢, 2), (<,2") € (S x T x U)

and
((1"“’ y//)’ (y”’ Z//)v (Z//a J,‘//)) € (S x T x U),

for the same reasons. Now, suppose for the purpose of contradiction that
a(z, )by, 2 )e(z", 2") = 1.
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Then by the Triple Product Property, it must be that y = ¢/, 2’ = 2”, and 2" = z, and so
((z,y), (v, 2"), (2", 2")) is in the support of (n,n,n). But as we have argued,

(z,9), (', 2), (z",2")) € (§ x T x U),
and thus this triple is included in our multiplicative matching, and so not all three projections

can be injective, a contradiction.

Now, we must prove that in the triangle TPP construction in G = Sy (for N = n(n+1)/2),
then size of each of the subgroups X,Y, Z is at least |G|/e*™). Then plugging in to the
previous argument gives the desired multiplicative matching.

Note that | X|=|Y|=|Z| =nl(n —1)(n —2)!---2!1L
Using the fact that 2" > () = n!/((n — )!i!), we see that

X2 > (n+ 1)17/2) > (1 (2e))"0 D),

where the last inequality used Stirling’s approximation which implies that n! > (n/e)".

On the other hand we have
|G| = N! < poly(n) - (n(n +1)/2)/e)"" /2 < poly(n) - 2N (),
and combining with the above lower bound on | X|, we obtain the desired result.

(a) Set f to be the function which is 1 on 0 € F}’, and 0 on the rest of the domain; i.e.,

f(Xl,XQ,...,Xn):a-ﬁ Il &i-a),

i=1a€F,,a#0

where @ = 1/]],ep, az0(—a)" is a normalizing scalar. Clearly this f has degree (p—1)n,
and M is a permutation matrix, which has full rank.

(b) Notice that f(i + j) is a polynomial on 2n variables, with total degree d. Let S be the
set of monomials in i of total degree at most d/2. Then because each monomial of total
degree d must have i-degree at most d/2 OR j-degree at most d/2, we can write

Fli+5) =3 M@)Qu()+ > M(j)Qh (i),

MeS MeS

where the Qs and @, are polynomials. But this is a rank 2|S| decomposition of My,

and the claim follows from the observation that |S| = (%/ 2.

(a) Assume that the distinct prime powers ¢; are in increasing order; i.e., ¢1 < g2 < g3 <
... < q. Set r; = 2¢;. Define the map f : [[;[r:]* — Cycy by
o
@V, a? . a®) = Z a; !
j=0

ko—1 @)
k1 J
+ Zaj &)
Jj=0
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k3—1

1 7“2 Z a(g)

+
ke—1

kl ktl
+ r17“2- T Za rt,

where [n]| denotes the integers {0,1,2,...,n — 1}.

It is clear then that f(a(l),a(z), . a(t)) mod r’fl is the integer whose base-r; digits are
aW. After subtracting this, and dividing by rlfl, the remaining integer mod 7“12“2 is the
integer whose base-ry digits are a® and so on... Therefore the map is injective.

Moreover, if the entries in the vector a(¥) are at most (r; — 1)/2, and the entries in the
vector b are at most (r; — 1)/2, it holds that

F@,a® . a®y+ £0M 63 ) = f(aD 6D 0@ 453 q® 4 p®),

since there are no “carries” in the addition in the integers.

We can apply the map f to H by identifying the elements of Z, with the integers
{0,1,...,p; — 1}. Now if we apply map f to each of the elements of the A; and B;
sets that make up the two-families construction, we obtain sets of the same cardinality
(by injectivity), and by the aforementioned observation, we find that f is injective on
H + H. This means that the defining axioms of the two-families construction hold for
the A} and B] sets, as required (i.e. if some f(a)+ f(b) € A, + B! was the same as some
f(e) + f(d) € A% + By, then

fla+b) = f(a) + f(b) = f(c) + f(d) = fc+d)

which implies a +b = ¢+ d by injectivity but a+b € A; + B; and c+d € A;+ By, etc...)

Fix 6 > 0, set k = Y, k;, and arrange the prime powers in increasing order (with
repetitions) so that
H=2Z, X Zy, X Zpy X -+ X Zp,

and p; < p2 < p3 < -+ < pg. We are going to break H into the part with prime
powers less that L = 21/ and the rest, denoted Hy and Hy, so H = Hy x Hy. If
|Ho| = Tlip,<Pi < |H|°, then we claim N < [H|[?+0+0) This is because 2p; < p? for
all 7, and so we get that the size of Hy at most squares, while the size of H; gets raised
to at most (1 + 0) because p; > L implies 2p; < pZH‘; So, if N > |H|**39, it must be
that |Ho| > |H|%.

But the prime powers appearing in Hy are bounded by the constant L, and so one of
them must appear at least ¢ = log; |Ho|/L times, and then by the Theorem, the slice
rank of H is at most |H|/c! < |H|/|Ho[loee/Llos L) = |H[1=¢0*/2"° "here ¢ > 0 is an
absolute constant.

Suppose we can prove w < 2 + § for via and two-families construction in H. We are

given that this implies a multiplicative matching in H? of cardinality at least |H|3(1=¢)
which means that the slice rank of Tys is at least |H[2(17%) as well.
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We claim that N < |H|"t% (for & such that (§') > ¢d). If not, then by the previous
part, the slice rank of T is at most \H\l_”(‘sl), which implies that the slice rank of T3
is at most |H[>(1=7(9)) | a contradiction.

So by the first part, we have a two-families construction in Zy with N < |H |1+5,. If the
two-families conjecture is true in a sequence of groups, then § can be made arbitrarily
small, and thus ¢’ can be made arbitrarily small. Thus we have a construction in cyclic
groups where the size and number of the sets A;, B; remains the same, and the size
of the containing group approaches |H|. If the first original construction proved the
two-families conjecture, then this one does as well.



