
CS 153 Current topics in theoretical computer science Spring 2012

Solution Set 2

Out: May 29

Please do not consult these solutions if you have not yet turned in the problem set!

1. Consider a 0/1 matrix n× n matrix M with entries Mi,j . The function g(M) defined by

g(M) =
∏

i,j,i′,j′:i=i′ or j=j′

(1−Mi,jMi′,j′)

is 0 if there is any row or column of M with more than a single 1 in it, and 1 otherwise. The
function h(M) defined by

h(M) =
∏
i

1−
∏
j

(1−Mi,j)


is 0 if there is a row of all 0’s, and 1 otherwise. Together, g(M)h(M) = 1 iffM is a permutation
matrix.

Now, let Mk[i, j] denote the (i, j) entry in the k-th power, Mk. Note that Mk[i, j] is a
polynomial of degree k in the entries Mi,j , which can be computed by an arithmetic circuit
of polynomial size. A permutation matrix M represents an n-cycle iff Mk[1, 1] = 0 for
k = 1, 2, . . . , n− 1. Using this, we see that

f(M,X) = g(M)h(M)
n−1∏
k=1

(1−Mk[1, 1])
∏
i,j

Mi,jXi,j

is equivalent to
∏

iXi,σ(i) when M represents the n-cycle permutation σ, and 0 otherwise.
Thus ∑

M∈{0,1}n×n

f(M,X) = hcn(X)

which places hc in VNP.

2. Recall that a Mk(f) is a lower bound on the noncommutative formula complexity of a poly-
nomial f of degree n, where Mk[i, j] for i ∈ [n]k and j ∈ [n]n−k is the coefficient on the
monomial Xi1Xi2 . . . XikXj1Xj2 . . . Xjn−k

in f .

Now consider Mk(permn), and recall that permn has variables Xa,b for a, b ∈ [n]. All
rows indexed by k-tuples (a1, b1), . . . (ak, bk) in which (a1, . . . , ak) ̸= (1, 2, . . . k) or (b1, . . . , bk)
has repeated entries are zero (since Xa1,b1 , . . . , Xak,bk is not a prefix of any monomial oc-
curring in permn). Similarly, columns indexed by n − k-tuples (a1, b1), . . . (an−k, bn−k) in
which (a1, . . . , an−k) ̸= (k + 1, . . . , n) or (b1, . . . , bn−k) has repeated entries are zero (since
Xa1,b1 , . . . , Xan−k,bn−k

is not a suffix of any monomial occurring in permn). Thus the non-zero
rows correspond to k-subsets of [n] and the non-zero columns correspond to (n − k)-subsets
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of [n]; the corresponding entry of Mk is 1 iff the row-subset and column-subset are disjoint.
Thus Mk contains the Iℓ for ℓ =

(n
k

)
as a submatrix, and so its rank is at least

(n
k

)
.

For detn, the same argument shows that the non-zero rows of Mk(detn) correspond to k-
subsets of [n] and the non-zero columns correspond to (n−k)-subsets of [n]; the corresponding
entry of Mk is ±1 iff the row-subset and column-subset are disjoint, and so the rank is again
at least

(n
k

)
.

3. (a) As in class, a monotone circuit for a degree n homogeneous polynomial f of size s implies
that f can be written as

f =
s∑

i=1

gihi

where n/3 ≤ deg(gi) ≤ 2n/3 and deg(hi) = n − deg(gi), and gi and hi have all non-
negative coefficients.

Let fn(X) be the perfect matching polynomial for graph Gn, and consider a particular
gihi. Let S be the vertices incident to edges mentioned in gi and T be the vertices
incident to edges mentioned in hi. Each monomial in gi must be a perfect matching on
S and each monomial in hi must be a perfect matching on T , and S, T must partition
the vertices of Gn; otherwise a monomial appear in gihi that is not a perfect matching
of Gn.

By the degree constraints on gi, hi we have that |S|, |T | satisfy the conditions of the first
lemma, which we will apply with t a large constant (say, 100), to obtain a set E′ of
well-separated edges crossing the S, T cut.

For each edge e ∈ E′, select a G22 subgraph that has the “distinguished vertex v” (from
the second lemma) as an endpoint of e. By the well-separated-ness of E′, these subgraphs
are all vertex-disjoint.

Now, every perfect matching M of the whole graph Gn can be decomposed uniquely
into (i) a matching M ′ in Gn with no edges contained in any of the G22 subgraphs
(but possibly including edges that touch the outer face of a G22 subgraph), and (ii) for
each G22 subgraph, a perfect matching on the graph that remains after deleting the
already-covered vertices on the outer face.

For each such matching M ′, we have by the second lemma, that the ratio of total perfect
matchings within a G22 subgraph to perfect matchings within a G22 subgraph that
exclude the e ∈ E′ (that was used to select it) – of which there must be at least one
since monomials of gihi are perfect matchings of Gn that exclude E′ – is c > 1. Thus
the ratio of total perfect matchings that extend M ′ to those that occur in gihi (and
therefore exclude E′) is c|E

′| ≥ cϵn = exp(n).

We conclude that a given gihi term contains monomials corresponding to only an expo-
nentially small fraction of all perfect matchings, and thus s must be exponential in n,
as desired.

(b) We prove that every (+,−,×) circuit of size s can be converted to one using only a
single negation, of size O(s). We then apply the fact that fn is in VP.

The proof is by induction on the size of the circuit. If the original circuit is a single
constant c or a variable Xi, then we replace it with c − 0 if c is positive or 0 − c if c is
non-positive, or Xi − 0 in the case of a variable.
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Then, for a general circuit, if the top gate is computing f = g + h, then we have by
induction monotone circuits computing g′, g′′, h′, h′′ such that g = g′−g′′ and h = h′−h′′.
We then can write f = f ′ − f ′′ with f ′ = g′ + h′ and f ′′ = g′′ + h′′.

Similarly, if the top gate is computing f = g × h, then we have by induction monotone
circuits computing g′, g′′, h′, h′′ such that g = g′ − g′′ and h = h′ − h′′ and we then can
write f = f ′ − f ′′ with f ′ = g′h′ + g′′h′′ and f ′′ = g′′h′ + h′′g′.

Finally, if the top gate is computing f = g − h, then we have by induction monotone
circuits computing g′, g′′, h′, h′′ such that g = g′ − g′′ and h = h′ − h′′ and we then can
write f = f ′ − f ′′ with f ′ = g′′ + h′′ and f ′′ = g′ + h′.


