
CS 151 Complexity Theory Spring 2023

Solution Set 6

Posted: May 25 Chris Umans

1. (a) We observe that the largest possible set shattered by a collection of 2m subsets is m,
since a set of size m + 1 has more than 2m distinct subsets. The VC dimension of a
collection of subsets succinctly encoded by a circuit C can therefore be at most |C|, since
C can encode at most 2|C| subsets. Thus we can express VC-DIMENSION as follows:

{(C, k) : ∃X ∀X ′ ⊆ X ∃i [|X| ≥ k and ∀y ∈ X C(i, y) = 1⇔ y ∈ X ′]}

Notice that |X|, |X ′|, and |i| are all bounded by |C| (using the observation above),
and that the expression in the square brackets is computable in poly(|C|) time. Thus
VC-DIMENSION is in Σp

3.

(b) Let φ(a, b, c) be an instance of QSAT3 (so we are interested in whether ∃a ∀b ∃c φ(a, b, c)).
We may assume by adding dummy variables if necessary that |a| = |b| = |c| = n. As
suggested our universe is U = {0, 1}n × {1, 2, 3, . . . , n}. We identify n-bit strings with
subsets of {1, 2, 3, . . . , n}, and define our collection S of sets to be the sets

Sa,b,c =

{
{a} × b if φ(a, b, c) = 1
∅ otherwise

for all a, b, c.

There is a small circuit C that succinctly encodes this collection of sets – given an
element x = (a′, k) ∈ U and a set name (a, b, c), determining whether x ∈ Sa,b,c requires
only that we check if φ(a, b, c) = 1 (if it is not, then the set is the empty set and clearly
x 6∈ Sa,b,c) and then check if x ∈ {a} × b (i.e., check whether a′ = a and bk = 1). Our
instance of VC-DIMENSION is (C, n).

If φ is a positive instance, i.e., ∃a ∀b ∃c φ(a, b, c) = 1, then the set Ua = {a} ×
{1, 2, 3, . . . , n} of size n is shattered, because S contains sets of the form {a} × b for
all b. Thus the VC dimension of S is at least n.

Conversely, if the VC dimension of S is at least n, then there is a set X of size n that
is shattered by S. We observe that X cannot contain elements of two different subsets
Ua and Ua′ because then the set consisting of these two elements cannot be expressed
as the intersection of X with some set in S (all of our sets are subsets of some Ua). We
conclude that X ⊆ Ua for some a, and the fact that it is shattered implies that sets of
the form {a} × b for all b must be present in S. This implies that ∀b ∃c φ(a, b, c), so we
have a positive instance.

We have shown that (C, n) is a positive instance of VC-DIMENSION iff φ is a positive
instance of QSAT3, as required.

6-1

6-2

2. (a) Let C1, C2 be two circuits. The circuit C(x, y) = C1(x)∧C2(y) has a number of satisfying
assignments equal to the product of the number of satisfying assignments of C1 and the
number of satisfying assignment of C2. Observe that the size of C is at most |C1| +
|C2|+O(1)

To handle the sum, we first define C ′1(x, y) to be the circuit that outputs 1 iff C1(x)
outputs 1 and y is the all-zeros string, and C ′2(x, y) to be the circuit that outputs 1 iff
C2(y) outputs 1 and x is the all-zeros string. Clearly the number of satisfying assignments
of C ′1 is the same as the number of satisfying assignments of C1 and similarly for C ′2
and C2. This manipulation ensures that both circuits are defined over the same set of
inputs. Now, the circuit C(z, x, y) = (z ∧C ′1(x, y))∨ (¬z ∧C ′2(x, y)) (where z is a single
fresh Boolean variable) has a number of satisfying assignments equal to the sum of the
number of satisfying assignments of C ′1 and the number of satisfying assignment of C ′2.
Observe that the size of C is at most |C1| + |C2| + O(n), where n is the number of
variables of C1 and C2.

Let B be the number of satisfying assignments of C. Given the polynomial g =
∑
i ait

i,
we can produce circuits Ci with a number of satisfying assignments equal to Bi by
applying the “product” transformation to C with itself i times. By the above observation
|Ci| ≤ deg(g)|C|+O(deg(g)).

We can easily produce a circuit Di that has exactly ai satisfying assignments as follows:
Di has dlog2 aie variables, it treats its input as a nonnegative integer, and outputs 1
iff that integer is less than ai. Thus circuit Di has size O(log ai). We now produce
a circuit C ′i with a number of satisfying assignments equal to aiB

i, by applying the
“product” transformation to the circuits Di and Ci. The resulting circuit has size at
most |Ci|+O(log ai).

Finally, we apply the “sum” transformation deg(g)−1 times to produce a circuit C ′ from
the C ′i with a number of satisfying assignments equal to

∑
i aiB

i = g(B). If A = maxi ai,
we have

|C ′| ≤ O
(∑

i

|C ′i|
)
≤ deg(g) ·O(deg(g)|C|+O(logA))

which is polynomial in |C| and the size of polynomial g when written in the natural way
as a vector of coefficients (each of which takes at most A bits to write down).

(b) Let’s check the property of g0. We have:

g0(Y) = Y 2(3− 2Y)

and plugging in a multiple of 22
i

for Y we see that the result is a multiple of (22
i
)2 = 22

i+1
.

This verifies the first property. Also,

g0(Y + 1) = 3(y2 + 2Y + 1)− 2(Y 3 + 3Y 3 + 3Y + 1) = −2Y 3 − 3Y 2 + 1

Plugging in any multiple of 22
i

for Y into this shifted polynomial we see that the result
is 1 plus a multiple of (22

i
)2 = 22

i+1
, which verifies the second property.

Let m = 2k for a positive integer k. Then by composing g0 with itself k times, we produce
the required polynomial g. The composed polynomial has degree 3k = poly(m), and

nonnegative integer coefficients of magnitude at most 3(3
k) = exp(poly(m)) so the entire

6-3

polynomial can be written down is space poly(m). Actually performing the composition
just requires multiplying out the terms which can easily be done in time poly(m).

(c) We know from the last problem set that the PH is contained in BPP⊕P . Fix a language
L in BPP⊕P . We first observe that we can have the BPP machine flip all of its coins
first (writing them down) and then proceed with a deterministic computation whose
input is the original input plus the random coins. In other words L can be decided by
a BPP oracle TM that makes a single oracle query to a P⊕P oracle, and enters qaccept
if the answer is “yes” and qreject if the answer is “no.” By Problem 2(d) on the last
problem set P⊕P ⊆ (⊕P)⊕P ⊆ ⊕P , so this oracle can be replaced with an ⊕P oracle.

So now we have a BPP⊕P machine with the special structure suggested by the hint, and
let r be the number of coins it tosses. Let M be the nondeterministic TM associated
with the ⊕P oracle language, and let Cy denote the circuit sat instance obtained from
M on input y. On a given computation path where w ∈ {0, 1}r are the random coins
tossed by the BPP machine, resulting in oracle query y = f(w), the BPP⊕P machine
enters qaccept iff the number of satisfying assignments to Cy is odd, and qreject otherwise.
Put another way, it enters qaccept if the number of satisfying assignments is 1 mod 2 and
qreject if the number of satisfying assignments is 0 mod 2.

By applying parts (a) and (b), we can efficiently produce from Cy a circuit C ′y for which
the number of satisfying assignments to C ′y is either 0 or 1 modulo B = 2r+1. Where
does this get us? In the case of an input x ∈ L, there are at least (2/3)2r paths of the
BPP machine that produce a circuit C ′y with a number of satisfying assignments that is
1 mod B and the others produce a circuit C ′y with a number of satisfying assignments
that is 0 mod B. In the case of an input x 6∈ L, there are at most (1/3)2r paths of the
BPP machine that produce a circuit C ′y with a number of satisfying assignments that is
1 mod B and the others produce a circuit C ′y with a number of satisfying assignments
that is 0 mod B.

So, given input x, if we count the number of (w, z) pairs (where w is a sequence of r
random coins tossed by the BPP machine) for which C ′f(w)(z) = 1, this number modulo

B will be equivalent to something between (2/3)2r and 2r if x ∈ L and something
between 0 and (1/3)2r if x 6∈ L. Thus we can decide L in P#P , since we can recognize
the set of (w, z) pairs for which C ′f(w)(z) = 1 in polynomial time (so getting a raw count

can be done in #P , and then the P machine only needs to take the result modulo B).

3. (a) We describe R′ separately for strings x of each length. Consider strings x of length m
and assume |z| = |x|c. Set k = m3c and n = k2, and let E : {0, 1}n × {0, 1}t → {0, 1}mc

be a (k, ε) extractor with ε < 1/6 and t = O(log n). Define the language R̂ to be those
triples (x, y, ẑ) for which (x, y, E(ẑ, w)) ∈ R for more than half of the w ∈ {0, 1}t. Since
R is in P and t = O(log n), R̂ is also in P. We now claim that

• If x ∈ L, then there exists y for which

|{ẑ : (x, y, ẑ) 6∈ R̂}| ≤ 2n
1/2
.

To prove this, take y to be the y for which Prz[(x, y, z) ∈ R] ≥ 2/3 (guaranteed by
the definition), and call a ẑ in the above set “bad.” For ẑ to be bad, it must be that

|Pr
z

[(x, y, z) ∈ R]− Pr
w

[(x, y, E(ẑ, w)) ∈ R]| > 1/6,

6-4

(since the left probability is at least 2/3, and the right one must be less than 1/2

for bad ẑ). Thus there must be fewer than 2k = 2n
1/2

bad ẑ (because the set of bad
ẑ comprise a source with minentropy k on which the extractor fails).

• If x 6∈ L, then for all y

|{ẑ : (x, y, ẑ) ∈ R̂}| ≤ 2n
1/2
.

To prove this, fix a y and call a ẑ in the above set “bad.” For ẑ to be bad, it must
be that

|Pr
z

[(x, y, z) ∈ R]− Pr
w

[(x, y, E(ẑ, w)) ∈ R]| > 1/6,

(since the left probability is at most 1/3, and the right one must be at least 1/2 for

bad ẑ). Thus there must be fewer than 2k = 2n
1/2

bad ẑ for the same reason as
above.

Now we can define R′. The idea is to split ẑ into two equal-length halves: ẑ = (ẑ1, ẑ2).
Then we define R′ to be those (x, y′ = (y, ẑ1), z

′ = ẑ2) for which (x, y, ẑ) ∈ R̂. Let’s
check that this satisfies the requirements. If x ∈ L, then there exists a y and a ẑ1 for
which for all ẑ2, (x, y, ẑ) ∈ R̂ (if not, then there would be at least 2n/2 > 2n

1/2
distinct ẑ

for which (x, y, ẑ) 6∈ R̂, contradicting out analysis above). And, if x 6∈ L, then we claim
that for all y and all ẑ1, Prẑ2 [(x, y, ẑ) ∈ R̂] < 1/3. If not, then for some y there would be

at least (2/3)2n/2 > 2n
1/2

distinct ẑ for which (x, y, ẑ) ∈ R̂, contradicting out analysis
above.

(b) As in part (a), we describe R′ separately for strings x of each length. Consider strings x of
length m and assume |y| = |x|c. Set k = m3c and n = k2, and let E : {0, 1}n×{0, 1}t →
{0, 1}mc

be a (k, ε) extractor with ε < 1/6 and t = O(log n). Define the language R̂ to
be those triples (x, ŷ, (zw)w∈{0,1}t) for which (x,E(ŷ, w), zw) ∈ R for more than half of

the w ∈ {0, 1}t. Since R is in P and t = O(log n), R̂ is also in P. We now claim that

• If x ∈ L, then we claim

|{ŷ|∀(zw)w∈{0,1}t (x, ŷ, (zw)w∈{0,1}t) 6∈ R̂}| ≤ 2n
1/2
.

Call a ŷ in the above set “bad.” For ŷ to be bad, it must be that

|Pr
y

[∃z (x, y, z) ∈ R]− Pr
w

[∃z(x,E(ŷ, w), z) ∈ R]| > 1/6,

(since the left probability is at least 2/3, and the right one must by less than 1/2

for bad ŷ). Thus there must be fewer than 2k = 2n
1/2

bad ŷ (because the set of bad
ŷ comprise a source with minentropy k on which the extractor fails).

• If x 6∈ L, then we claim

|{ŷ : ∃(zw)w∈{0,1}t for which (x, ŷ, (zw)w∈{0,1}t) ∈ R̂}| ≤ 2n
1/2
.

Call a ŷ in the above set “bad.” For ŷ to be bad, it must be that

|Pr
y

[∃z (x, y, z) ∈ R]− Pr
w

[∃z(x,E(ŷ, w), z) ∈ R]| > 1/6,

(since the left probability is at most 1/3, and the right one must be at least 1/2 for

bad ŷ). Thus there must be fewer than 2k = 2n
1/2

bad ŷ for the same reasons as
above.

6-5

Now we can define R′. Similar to before, the idea is to split ŷ into two equal-length
halves: ŷ = (ŷ1, ŷ2). Then we define R′ to be those (x, y′ = ŷ1, z

′ = (ŷ2, (zw)w∈{0,1}t))

for which (x, ŷ, (zw)w∈{0,1}t) ∈ R̂. Let’s check that this satisfies the requirements. If

x ∈ L, then for all ŷ1, there exist ŷ2, (zw)w∈{0,1}t for which (x, ŷ, (zw)w∈{0,1}t) ∈ R̂ (if

not, then there would be at least 2n/2 > 2n
1/2

distinct ŷ for which

∀(zw)w∈{0,1}t (x, ŷ, (zw)w∈{0,1}t) 6∈ R̂,

contradicting out analysis above). And, if x 6∈ L, then we claim that

Pr
ŷ1

[∃ŷ2, (zw)w∈{0,1}t for which (x, ŷ, (zw)w∈{0,1}t) ∈ R̂)] ≤ 1/3.

If not, then there would be at least (1/3)2n/2 > 2n
1/2

distinct ŷ for which there exists
(zw)w∈{0,1}t such that (x, ŷ, (zw)w∈{0,1}t) ∈ R̂), contradicting out analysis above.

4. (a) Given an n × n matrix A with nonnegative integer entries, we produce a circuit that
takes as input a permutation π on the set {1, 2, . . . , n}, and z1, z2, . . . , zn, where each zi ∈
{0, 1}m, where m is the least positive integer for which 2m exceeds the largest entry of A.
It is clear that the input to this circuit is at most polynomial in the length of the bitstring
that describes A. We view each zi as specifying an integer in {0, 1, 2, . . . , 2m − 1}. The
circuit then outputs 1 if z1 < A[1, π(1)] and z2 < A[2, π(2)] and z3 < A[3, π(3)], and
· · · and zn < A[n, π(n)]. Since this is a polynomial-time computation, and the circuit’s
input is polynomial in the size of A, the overall circuit is polynomial in the size of A.
For each particular π, let’s count the number of z1, z2, . . . , zn that cause the C to output
1. We can choose any one of A[1, π(1)] values for z1, any one of A[2, π(2)] values for z2,
etc... Thus the total number of satisfying assignments of C is exactly

∑
π

n∏
i=1

A[i, π(i)]

which is exactly perm(A). We have produced an instance of #SAT , whose answer is
perm(A), and #SAT is in #P ; thus computing perm(A) is in #P .

(b) Given an instance G(V,E) of #cyclecover, produce the matrix AG whose rows and
columns are indexed by V , with AG[u, v] = 1 iff (u, v) ∈ E, and 0 otherwise. There
is an exact correspondence between cycle covers in G and permutations of V for which
(i, π(i)) ∈ E for all i. But perm(AG) counts exactly these permutations (any other
permutation has AG[i, π(i)] = 0 for some i and so does not contribute to the sum). Thus
the map G 7→ AG is a parsimonious reduction from #cyclecover to f , which shows
that computing the permanent is #P -hard, and together with (a), it is #P -complete.

