Solution Set 6

Posted: May 25
Chris Umans

1. (a) We observe that the largest possible set shattered by a collection of 2^{m} subsets is m, since a set of size $m+1$ has more than 2^{m} distinct subsets. The VC dimension of a collection of subsets succinctly encoded by a circuit C can therefore be at most $|C|$, since C can encode at most $2^{|C|}$ subsets. Thus we can express VC-DIMENSION as follows:

$$
\left\{(C, k): \exists X \forall X^{\prime} \subseteq X \exists i\left[|X| \geq k \text { and } \forall y \in X C(i, y)=1 \Leftrightarrow y \in X^{\prime}\right]\right\}
$$

Notice that $|X|,\left|X^{\prime}\right|$, and $|i|$ are all bounded by $|C|$ (using the observation above), and that the expression in the square brackets is computable in poly $(|C|)$ time. Thus VC-DIMENSION is in Σ_{3}^{p}.
(b) Let $\phi(a, b, c)$ be an instance of QSAT_{3} (so we are interested in whether $\exists a \forall b \exists c \phi(a, b, c)$). We may assume by adding dummy variables if necessary that $|a|=|b|=|c|=n$. As suggested our universe is $U=\{0,1\}^{n} \times\{1,2,3, \ldots, n\}$. We identify n-bit strings with subsets of $\{1,2,3, \ldots, n\}$, and define our collection \mathcal{S} of sets to be the sets

$$
S_{a, b, c}= \begin{cases}\{a\} \times b & \text { if } \phi(a, b, c)=1 \\ \emptyset & \text { otherwise }\end{cases}
$$

for all a, b, c.
There is a small circuit C that succinctly encodes this collection of sets - given an element $x=\left(a^{\prime}, k\right) \in U$ and a set name (a, b, c), determining whether $x \in S_{a, b, c}$ requires only that we check if $\phi(a, b, c)=1$ (if it is not, then the set is the empty set and clearly $x \notin S_{a, b, c}$) and then check if $x \in\{a\} \times b$ (i.e., check whether $a^{\prime}=a$ and $b_{k}=1$). Our instance of VC-DIMENSION is (C, n).
If ϕ is a positive instance, i.e., $\exists a \forall b \exists c \phi(a, b, c)=1$, then the set $U_{a}=\{a\} \times$ $\{1,2,3, \ldots, n\}$ of size n is shattered, because \mathcal{S} contains sets of the form $\{a\} \times b$ for all b. Thus the VC dimension of \mathcal{S} is at least n.
Conversely, if the VC dimension of \mathcal{S} is at least n, then there is a set X of size n that is shattered by \mathcal{S}. We observe that X cannot contain elements of two different subsets U_{a} and $U_{a^{\prime}}$ because then the set consisting of these two elements cannot be expressed as the intersection of X with some set in \mathcal{S} (all of our sets are subsets of some U_{a}). We conclude that $X \subseteq U_{a}$ for some a, and the fact that it is shattered implies that sets of the form $\{a\} \times b$ for all b must be present in \mathcal{S}. This implies that $\forall b \exists c \phi(a, b, c)$, so we have a positive instance.
We have shown that (C, n) is a positive instance of VC-DIMENSION iff ϕ is a positive instance of QSAT $_{3}$, as required.
2. (a) Let C_{1}, C_{2} be two circuits. The circuit $C(x, y)=C_{1}(x) \wedge C_{2}(y)$ has a number of satisfying assignments equal to the product of the number of satisfying assignments of C_{1} and the number of satisfying assignment of C_{2}. Observe that the size of C is at most $\left|C_{1}\right|+$ $\left|C_{2}\right|+O(1)$
To handle the sum, we first define $C_{1}^{\prime}(x, y)$ to be the circuit that outputs 1 iff $C_{1}(x)$ outputs 1 and y is the all-zeros string, and $C_{2}^{\prime}(x, y)$ to be the circuit that outputs 1 iff $C_{2}(y)$ outputs 1 and x is the all-zeros string. Clearly the number of satisfying assignments of C_{1}^{\prime} is the same as the number of satisfying assignments of C_{1} and similarly for C_{2}^{\prime} and C_{2}. This manipulation ensures that both circuits are defined over the same set of inputs. Now, the circuit $C(z, x, y)=\left(z \wedge C_{1}^{\prime}(x, y)\right) \vee\left(\neg z \wedge C_{2}^{\prime}(x, y)\right)$ (where z is a single fresh Boolean variable) has a number of satisfying assignments equal to the sum of the number of satisfying assignments of C_{1}^{\prime} and the number of satisfying assignment of C_{2}^{\prime}. Observe that the size of C is at most $\left|C_{1}\right|+\left|C_{2}\right|+O(n)$, where n is the number of variables of C_{1} and C_{2}.
Let B be the number of satisfying assignments of C. Given the polynomial $g=\sum_{i} a_{i} t^{i}$, we can produce circuits C_{i} with a number of satisfying assignments equal to B^{i} by applying the "product" transformation to C with itself i times. By the above observation $\left|C_{i}\right| \leq \operatorname{deg}(g)|C|+O(\operatorname{deg}(g))$.
We can easily produce a circuit D_{i} that has exactly a_{i} satisfying assignments as follows: D_{i} has $\left\lceil\log _{2} a_{i}\right\rceil$ variables, it treats its input as a nonnegative integer, and outputs 1 iff that integer is less than a_{i}. Thus circuit D_{i} has size $O\left(\log a_{i}\right)$. We now produce a circuit C_{i}^{\prime} with a number of satisfying assignments equal to $a_{i} B^{i}$, by applying the "product" transformation to the circuits D_{i} and C_{i}. The resulting circuit has size at most $\left|C_{i}\right|+O\left(\log a_{i}\right)$.
Finally, we apply the "sum" transformation $\operatorname{deg}(g)-1$ times to produce a circuit C^{\prime} from the C_{i}^{\prime} with a number of satisfying assignments equal to $\sum_{i} a_{i} B^{i}=g(B)$. If $A=\max _{i} a_{i}$, we have

$$
\left|C^{\prime}\right| \leq O\left(\sum_{i}\left|C_{i}^{\prime}\right|\right) \leq \operatorname{deg}(g) \cdot O(\operatorname{deg}(g)|C|+O(\log A))
$$

which is polynomial in $|C|$ and the size of polynomial g when written in the natural way as a vector of coefficients (each of which takes at most A bits to write down).
(b) Let's check the property of g_{0}. We have:

$$
g_{0}(Y)=Y^{2}(3-2 Y)
$$

and plugging in a multiple of $2^{2^{i}}$ for Y we see that the result is a multiple of $\left(2^{2^{i}}\right)^{2}=2^{2^{i+1}}$. This verifies the first property. Also,

$$
g_{0}(Y+1)=3\left(y^{2}+2 Y+1\right)-2\left(Y^{3}+3 Y^{3}+3 Y+1\right)=-2 Y^{3}-3 Y^{2}+1
$$

Plugging in any multiple of $2^{2^{i}}$ for Y into this shifted polynomial we see that the result is 1 plus a multiple of $\left(2^{2^{i}}\right)^{2}=2^{2^{i+1}}$, which verifies the second property.
Let $m=2^{k}$ for a positive integer k. Then by composing g_{0} with itself k times, we produce the required polynomial g. The composed polynomial has degree $3^{k}=\operatorname{poly}(m)$, and nonnegative integer coefficients of magnitude at most $3^{\left(3^{k}\right)}=\exp (\operatorname{poly}(m))$ so the entire
polynomial can be written down is space poly (m). Actually performing the composition just requires multiplying out the terms which can easily be done in time poly (m).
(c) We know from the last problem set that the $P H$ is contained in $B P P^{\oplus P}$. Fix a language L in $B P P^{\oplus P}$. We first observe that we can have the $B P P$ machine flip all of its coins first (writing them down) and then proceed with a deterministic computation whose input is the original input plus the random coins. In other words L can be decided by a $B P P$ oracle TM that makes a single oracle query to a $P^{\oplus P}$ oracle, and enters $q_{\text {accept }}$ if the answer is "yes" and $q_{\text {reject }}$ if the answer is "no." By Problem 2(d) on the last problem set $P^{\oplus P} \subseteq(\oplus P)^{\oplus P} \subseteq \oplus P$, so this oracle can be replaced with an $\oplus P$ oracle.
So now we have a $B P P^{\oplus P}$ machine with the special structure suggested by the hint, and let r be the number of coins it tosses. Let M be the nondeterministic TM associated with the $\oplus P$ oracle language, and let C_{y} denote the circuit sat instance obtained from M on input y. On a given computation path where $w \in\{0,1\}^{r}$ are the random coins tossed by the $B P P$ machine, resulting in oracle query $y=f(w)$, the $B P P^{\oplus P}$ machine enters $q_{\text {accept }}$ iff the number of satisfying assignments to C_{y} is odd, and $q_{\text {reject }}$ otherwise. Put another way, it enters $q_{\text {accept }}$ if the number of satisfying assignments is $1 \bmod 2$ and $q_{\text {reject }}$ if the number of satisfying assignments is $0 \bmod 2$.
By applying parts (a) and (b), we can efficiently produce from C_{y} a circuit C_{y}^{\prime} for which the number of satisfying assignments to C_{y}^{\prime} is either 0 or 1 modulo $B=2^{r+1}$. Where does this get us? In the case of an input $x \in L$, there are at least $(2 / 3) 2^{r}$ paths of the BPP machine that produce a circuit C_{y}^{\prime} with a number of satisfying assignments that is $1 \bmod B$ and the others produce a circuit C_{y}^{\prime} with a number of satisfying assignments that is $0 \bmod B$. In the case of an input $x \notin L$, there are at most $(1 / 3) 2^{r}$ paths of the BPP machine that produce a circuit C_{y}^{\prime} with a number of satisfying assignments that is $1 \bmod B$ and the others produce a circuit C_{y}^{\prime} with a number of satisfying assignments that is $0 \bmod B$.
So, given input x, if we count the number of (w, z) pairs (where w is a sequence of r random coins tossed by the $B P P$ machine) for which $C_{f(w)}^{\prime}(z)=1$, this number modulo B will be equivalent to something between $(2 / 3) 2^{r}$ and 2^{r} if $x \in L$ and something between 0 and $(1 / 3) 2^{r}$ if $x \notin L$. Thus we can decide L in $P^{\# P}$, since we can recognize the set of (w, z) pairs for which $C_{f(w)}^{\prime}(z)=1$ in polynomial time (so getting a raw count can be done in \#P, and then the P machine only needs to take the result modulo B).
3. (a) We describe R^{\prime} separately for strings x of each length. Consider strings x of length m and assume $|z|=|x|^{c}$. Set $k=m^{3 c}$ and $n=k^{2}$, and let $E:\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow\{0,1\}^{m^{c}}$ be a (k, ϵ) extractor with $\epsilon<1 / 6$ and $t=O(\log n)$. Define the language \widehat{R} to be those triples (x, y, \hat{z}) for which $(x, y, E(\hat{z}, w)) \in R$ for more than half of the $w \in\{0,1\}^{t}$. Since R is in \mathbf{P} and $t=O(\log n), \widehat{R}$ is also in \mathbf{P}. We now claim that

- If $x \in L$, then there exists y for which

$$
|\{\hat{z}:(x, y, \hat{z}) \notin \widehat{R}\}| \leq 2^{n^{1 / 2}} .
$$

To prove this, take y to be the y for which $\operatorname{Pr}_{z}[(x, y, z) \in R] \geq 2 / 3$ (guaranteed by the definition), and call a \hat{z} in the above set "bad." For \hat{z} to be bad, it must be that

$$
\left|\operatorname{Pr}_{z}[(x, y, z) \in R]-\underset{w}{\operatorname{Pr}}[(x, y, E(\hat{z}, w)) \in R]\right|>1 / 6,
$$

(since the left probability is at least $2 / 3$, and the right one must be less than $1 / 2$ for bad \hat{z}). Thus there must be fewer than $2^{k}=2^{n^{1 / 2}}$ bad \hat{z} (because the set of bad \hat{z} comprise a source with minentropy k on which the extractor fails).

- If $x \notin L$, then for all y

$$
|\{\hat{z}:(x, y, \hat{z}) \in \widehat{R}\}| \leq 2^{n^{1 / 2}}
$$

To prove this, fix a y and call a \hat{z} in the above set "bad." For \hat{z} to be bad, it must be that

$$
\left|\operatorname{Pr}_{z}[(x, y, z) \in R]-\operatorname{Pr}_{w}[(x, y, E(\hat{z}, w)) \in R]\right|>1 / 6,
$$

(since the left probability is at most $1 / 3$, and the right one must be at least $1 / 2$ for $\operatorname{bad} \hat{z}$). Thus there must be fewer than $2^{k}=2^{n^{1 / 2}}$ bad \hat{z} for the same reason as above.
Now we can define R^{\prime}. The idea is to split \hat{z} into two equal-length halves: $\hat{z}=\left(\hat{z}_{1}, \hat{z}_{2}\right)$. Then we define R^{\prime} to be those $\left(x, y^{\prime}=\left(y, \hat{z}_{1}\right), z^{\prime}=\hat{z}_{2}\right)$ for which $(x, y, \hat{z}) \in \widehat{R}$. Let's check that this satisfies the requirements. If $x \in L$, then there exists a y and a \hat{z}_{1} for which for all $\hat{z}_{2},(x, y, \hat{z}) \in \widehat{R}$ (if not, then there would be at least $2^{n / 2}>2^{n^{1 / 2}}$ distinct \hat{z} for which $(x, y, \hat{z}) \notin \widehat{R}$, contradicting out analysis above). And, if $x \notin L$, then we claim that for all y and all $\hat{z}_{1}, \operatorname{Pr}_{\hat{z}_{2}}[(x, y, \hat{z}) \in \widehat{R}]<1 / 3$. If not, then for some y there would be at least $(2 / 3) 2^{n / 2}>2^{n^{1 / 2}}$ distinct \hat{z} for which $(x, y, \hat{z}) \in \widehat{R}$, contradicting out analysis above.
(b) As in part (a), we describe R^{\prime} separately for strings x of each length. Consider strings x of length m and assume $|y|=|x|^{c}$. Set $k=m^{3 c}$ and $n=k^{2}$, and let $E:\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow$ $\{0,1\}^{m^{c}}$ be a (k, ϵ) extractor with $\epsilon<1 / 6$ and $t=O(\log n)$. Define the language \widehat{R} to be those triples $\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right)$ for which $\left(x, E(\hat{y}, w), z_{w}\right) \in R$ for more than half of the $w \in\{0,1\}^{t}$. Since R is in \mathbf{P} and $t=O(\log n), \widehat{R}$ is also in \mathbf{P}. We now claim that

- If $x \in L$, then we claim

$$
\left|\left\{\hat{y} \mid \forall\left(z_{w}\right)_{w \in\{0,1\}^{t}}\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \notin \widehat{R}\right\}\right| \leq 2^{n^{1 / 2}} .
$$

Call a \hat{y} in the above set "bad." For \hat{y} to be bad, it must be that

$$
\left|\operatorname{Pr}_{y}[\exists z(x, y, z) \in R]-\operatorname{Pr}_{w}[\exists z(x, E(\hat{y}, w), z) \in R]\right|>1 / 6,
$$

(since the left probability is at least $2 / 3$, and the right one must by less than $1 / 2$ for bad \hat{y}). Thus there must be fewer than $2^{k}=2^{n^{1 / 2}}$ bad \hat{y} (because the set of bad \hat{y} comprise a source with minentropy k on which the extractor fails).

- If $x \notin L$, then we claim

$$
\mid\left\{\hat{y}: \exists\left(z_{w}\right)_{w \in\{0,1\}^{t}} \text { for which }\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \in \widehat{R}\right\} \mid \leq 2^{n^{1 / 2}} .
$$

Call a \hat{y} in the above set "bad." For \hat{y} to be bad, it must be that

$$
\left|\operatorname{Pr}_{y}[\exists z \quad(x, y, z) \in R]-\operatorname{Pr}_{w}[\exists z(x, E(\hat{y}, w), z) \in R]\right|>1 / 6,
$$

(since the left probability is at most $1 / 3$, and the right one must be at least $1 / 2$ for $\operatorname{bad} \hat{y}$). Thus there must be fewer than $2^{k}=2^{n^{1 / 2}} \operatorname{bad} \hat{y}$ for the same reasons as above.

Now we can define R^{\prime}. Similar to before, the idea is to split \hat{y} into two equal-length halves: $\hat{y}=\left(\hat{y}_{1}, \hat{y}_{2}\right)$. Then we define R^{\prime} to be those $\left(x, y^{\prime}=\hat{y}_{1}, z^{\prime}=\left(\hat{y}_{2},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right)\right)$ for which $\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \in \widehat{R}$. Let's check that this satisfies the requirements. If $x \in L$, then for all \hat{y}_{1}, there exist $\hat{y}_{2},\left(z_{w}\right)_{w \in\{0,1\}^{t}}$ for which $\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \in \widehat{R}$ (if not, then there would be at least $2^{n / 2}>2^{n^{1 / 2}}$ distinct \hat{y} for which

$$
\forall\left(z_{w}\right)_{w \in\{0,1\}^{t}}\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \notin \widehat{R},
$$

contradicting out analysis above). And, if $x \notin L$, then we claim that

$$
\left.\underset{\hat{y}_{1}}{\operatorname{Pr}}\left[\exists \hat{y}_{2},\left(z_{w}\right)_{w \in\{0,1\}^{t}} \text { for which }\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \in \widehat{R}\right)\right] \leq 1 / 3 .
$$

If not, then there would be at least $(1 / 3) 2^{n / 2}>2^{n^{1 / 2}}$ distinct \hat{y} for which there exists $\left(z_{w}\right)_{w \in\{0,1\}^{t}}$ such that $\left.\left(x, \hat{y},\left(z_{w}\right)_{w \in\{0,1\}^{t}}\right) \in \widehat{R}\right)$, contradicting out analysis above.
4. (a) Given an $n \times n$ matrix A with nonnegative integer entries, we produce a circuit that takes as input a permutation π on the set $\{1,2, \ldots, n\}$, and $z_{1}, z_{2}, \ldots, z_{n}$, where each $z_{i} \in$ $\{0,1\}^{m}$, where m is the least positive integer for which 2^{m} exceeds the largest entry of A. It is clear that the input to this circuit is at most polynomial in the length of the bitstring that describes A. We view each z_{i} as specifying an integer in $\left\{0,1,2, \ldots, 2^{m}-1\right\}$. The circuit then outputs 1 if $z_{1}<A[1, \pi(1)]$ and $z_{2}<A[2, \pi(2)]$ and $z_{3}<A[3, \pi(3)]$, and \cdots and $z_{n}<A[n, \pi(n)]$. Since this is a polynomial-time computation, and the circuit's input is polynomial in the size of A, the overall circuit is polynomial in the size of A. For each particular π, let's count the number of $z_{1}, z_{2}, \ldots, z_{n}$ that cause the C to output 1. We can choose any one of $A[1, \pi(1)]$ values for z_{1}, any one of $A[2, \pi(2)]$ values for z_{2}, etc... Thus the total number of satisfying assignments of C is exactly

$$
\sum_{\pi} \prod_{i=1}^{n} A[i, \pi(i)]
$$

which is exactly $\operatorname{Perm}(A)$. We have produced an instance of $\# S A T$, whose answer is $\operatorname{PERm}(A)$, and $\# S A T$ is in $\# P$; thus computing $\operatorname{PERm}(A)$ is in $\# P$.
(b) Given an instance $G(V, E)$ of \#cyclecover, produce the matrix A_{G} whose rows and columns are indexed by V, with $A_{G}[u, v]=1 \mathrm{iff}(u, v) \in E$, and 0 otherwise. There is an exact correspondence between cycle covers in G and permutations of V for which $(i, \pi(i)) \in E$ for all i. But $\operatorname{Perm}\left(A_{G}\right)$ counts exactly these permutations (any other permutation has $A_{G}[i, \pi(i)]=0$ for some i and so does not contribute to the sum). Thus the map $G \mapsto A_{G}$ is a parsimonious reduction from \#CyClecover to f, which shows that computing the permanent is \#P-hard, and together with (a), it is $\# P$-complete.

