CS 151 Complexity Theory Spring 2023

Posted: May 4 Chris Umans

Solution Set 4

If you are turning in this problem set late, obviously you shouldn’t consult these solutions.

1.

2.

Consider a language L € ZPP decided by a machine M that runs in expected time n* for
some constant k. By Markov’s inequality, we see that

Pr[# steps before M (z,y) halts > 2|ac]k} <1/2.
y

We build a new machine M’ that simulates M and after 2|m]k simulation steps, it outputs
“fail”. The new machine certainly runs in polynomial time, with probability at most 1/2 it
outputs “fail,” and otherwise it accepts or rejects x correctly. Thus L € ZPP.

In the other direction, consider a language L € ZPP with associated probabilistic TM M that
runs in time n* and outputs “fail” with probability 1/2 and otherwise it accepts or rejects
its input correctly. We will simulate M repeatedly until it does not output “fail” (and then
accept or reject the input based on M’s answer). The expected number or repetitions is

G 12
22 A= (/272 >

and so the expected running time is 2n*. Thus L € ZPP. We conclude that ZPP = ZPP
as required.

(a) Since S is non-empty it contains some j € {1,2,3,...,¢}. Imagine choosing v; last. We
have ug = a iff v; = o — Zie(Sf{j}) v;. This happens with probability exactly 27
Now consider S # T, and WLOG let j be an element of S that is not in T', and let j’
be an element of 7' (which is nonempty). Imagine choosing all the v; except v; and v}.
There is a unique pair of values for v; and v;~ that make ug = a and ur = (5, and so
Prlus = a Aur = 3] = 272F as required.

(b) As suggested, we define the indicator random variables Xg for the event Ry, 44e¢;, = Cugte,
and X = ¢,y Xs. Note that E[Xg] > 1/2+ € and Var[Xs] < 1/4. Since the {Us} are
pairwise-independent, the { X} are as well. Thus Var[X] < (2/—1)/4 (since the variance
of the sum is the sum of the variances for pairwise independent random variables), and
E[X] > (1/2 4 €)(2° — 1) (by linearity of expectation). Now we have:

2t — 1 2t —1
v (S £0: Coy + Rure, = mi}| <] . [X < }

4-1

4-2

< PN BN)<
1
S 2o

where the second-to-last line invokes Chebyshev’s Inequality.

Our probabilistic procedure A works as follows: set ¢ = log(k/e? + 1), pick £ vectors
V1,V2,...,0p € IF’; independently and uniformly at random, and form the vectors ug =
Y icg Vi as in part (a). Note that C, + Cy = Cy4y. This leads to the key observation:
given C,, for all ¢, we can produce C,4 for any non-empty S because Cy, 4 = Eie g Cu;-
We enumerate all possible “guesses” for the C,, — call g; the guess for C,,. There are a
total of L = 2/ = O(k/€?) such sets of guesses, and for each we will output a message
for our list.

Specifically, for each such vector of guesses (g;)i=12,...¢ we do the following. For each j
and S, we compute zj5 = (3 ,cq9i) + Ryg+e;. If the guesses are correct, i.e., gi = Cy,
for all ¢, then our analysis in part (b) shows that for each j, with probability at least
1— ﬁ the majority of the z; g (over S) give m;. By a union bound, the probability that
y; = majg(z;s) = m; for all j is at least 3/4. Thus if we output y1y2...ys for each
guess, we will include the original message m in our list with probability at least 3/4.
The running time of the above procedure is poly(k,e™1) and it makes k(2¢ — 1) = k2 /€
queries to the received word R for each set of guesses, for an overall number of queries
poly(k,e™1).

Let us call an x “good” if

Pr(Co(w,y) = GL(f(a)] 2 1/2 4 e(n) /2.

Notice that GL(f],(z,y)) is the y-th bit of the Hadamard encoding C(f,(z)). If z is
“good” then C),(z,y) may be thought of as a received word that agrees with C(f,(x))
on 1/2 + €(n)/2 fraction of its positions.

Plugging C), into our probabilistic procedure A from the previous part (i.e., invoking
Cy(x,y) whenever we would have queried the y-th bit of R), we get a probabilistic proce-
dure A’ that outputs a list of L = O(n/e(n)) candidate messages, that with probability
at least 3/4 includes f,(x) (our “message”).

By modifying A’ one more time so that it outputs a random one of the L messages, we
obtain finally a probabilistic procedure that takes as input (z,y), and outputs (f,(x),y)
if is “good,” with probability at least (3/4)L~! = O(e(n)?/n). Since z is “good”
with probability at least €(n)/2, the overall probability that our probabilistic procedure
outputs f!(x,y) = (fn(z),y) is at least (e(n)/n)°M) as required.

The running time of the procedure A is (n/e)?(!) from the previous part, and in the worst
case we invoke Cy(x,y) (a size s(n) circuit) at each step to answer a query. Thus the
overall running time is at most (s(n)/e(n))?(M) (using the fact that s(n) > n). It is easy
to convert our current probabilistic procedure into a circuit with at most a quadratic
blowup (using the CVAL construction), and then we can fix the random bits to preserve
the probability of outputting the correct answer. Altogether, the size of the circuit family
derived in this way is (s(n)/e(n))?™) as required.

3.

(a)

()

4-3

A generic polynomial Q(z,y) with z-degree and y-degree at most /g has the form
Q(z,y) = > enr cmm(x,y) where M is the set of monomials in z,y with the required
degree constraints (e.g. z?y). Note that |M| = (/g + 1)? > g. We have ¢ constraints of
the form Q(w, R(w)) = 0 for w € F, that we wish to satisfy. Each of these is a linear
constraint on the coefficients ¢, of the form: >, cmm(w, R(w)) = 0. Thus we have
a homogeneous system of ¢ linear equations in |M| > ¢ variables, so there is a non-trivial
solution (i.e., one in which not all the ¢,, are zero). This gives us the desired polynomial
Q(z,y), and because solving this system of equations can be done in a straightforward
way using Gaussian elimination, () can be found efficiently.

Consider Q'(z) = Q(z, p(z)). By construction Q'(z) = Q(z,p(z)) = 0 for those z € F,
on which p and R agree, and we assume there are t > k,/g such z. But notice that Q' (x)
has degree at most /g + \/q(k — 1) = k,/q, and so the only way it can have ¢ zeros is
if it is identically zero. Now, as suggested, we view () as a univariate polynomial in y
with coefficients in Fy[xz]. We have just determined that Q(z,p(x)) is identically zero —
i.e., p(z) is a root of Q). Therefore y — p(x) divides . We can then factor @) (which as
noted can be done efficiently), and be assured that every codeword p(x) with agreement
t > k,/q with R will appear as a factor y — p(z) in this factorization.

We must show that the number of (i,) pairs with i + (k — 1)j < D = /2kq is greater
than ¢. Then using the same argument as in part (a), we will be able to find the desired
Q(z,y). For simplicity assume D/(k — 1) is an integer. Consider the set of integer pairs
R ={(i,j) :0<i< D,0<j<DJ(k—1)}, and observe that |R| = D?/(k — 1) =
2kq/(k —1). At least half of the pairs (¢, j) € R lie on or below the line i+ (k—1)j < D.
Thus there are at least |R|/2 = kq/(k — 1) > g such pairs as desired.

Now, using the same argument as in part (b), we see that Q'(xz) = Q(x, p(z)) has degree
at most D = /2kq, and therefore if p and R have agreement t > D, @' must be
identically zero, and thus p(z) is a root of Q(z,y). The same factoring algorithm as we
used above then finds all codewords p that have agreement ¢ > /2kq with the received
word R.

A generic polynomial Q(x,y0,y1,...,Yc—1) with individual degrees at most h — 1 has
the form Q(z,y) = >, car cm™(2, Y0, Y1, - - -, Ye—1) Where M is the set of monomials in
T,90,Y1,- - -, Ye1 With the required degree constraints. Note that |[M| = ht! > q. We
have ¢ constraints of the form Q(w, R(w)) = 0 for w € F, that we wish to satisfy. Each
of these is a linear constraint on the coefficients ¢,,. Thus we have a homogeneous system
of ¢ linear equations in |M| > ¢ variables, so there is a non-trivial solution (i.e., one in
which not all the ¢, are zero). This gives us the desired polynomial @), and because
solving this system of equations can be done in a straightforward way using Gaussian
elimination, () can be found efficiently.

Consider Q'(z) = Q(z,p(z),pM(x),...,p V(x)). By construction Q'(w) = 0 for
those w € [F, on which [p(o), . ,p(cfl)] and R agree, and we assume there are t > (¢ +
1)kh such w. But notice that Q'(x) has degree at most (h—1)+c(h—1)(k—1) < (c+1)kh,
and so the only way it can have t zeros is if it is the zero polynomial.

We claim that every polynomial p : F, — I, of degree at most & — 1 for which
[p©@, ..., p V] and R agree in t > (c + 1)kh positions, when viewed as an element

4-4

of Fylz]/E(x), is a root of @*. Why? Imagine plugging p(x) into the polynomial Q*.
This is just , B
Q(z,p(x), (p())", (p(x))"",..., (p(x))"" ") mod E(x).

The operation of taking a polynomial modulo E(z) commutes with the operations of
polynomial addition and multiplication, so this polynomial can also be written as:

Q(z,p(x) mod E(z), (p(w))h mod E(x), (p(nv))h2 mod E(x),..., (p(a;))hﬁ1 mod E(x)) mod E(z),

which is just Q(z,p® (z),p™ (x), p® (z),...,pl* Y (x)) mod E(z). In the previous part
we have established that this polynomial is the zero polynomial, and so we conclude that
p(z) is a root of Q* as claimed.

The number of roots of @*(z) is bounded by its degree, which is at most (h — 1)(1 +
h+h?+ .-+ he™l) = h¢ — 1, which is at most ¢. If we find all the roots of Q*, these
will include the p(x) polynomials associated with every PV codeword with agreement at
least (¢ — 1)kh with the received word R.

