
CS 151 Complexity Theory Spring 2023

Solution Set 2

Posted: April 20 Chris Umans

1. Suppose L ∈ NP ∩ coNP. Then there exist languages R1 and R2 in P for which

L = {x : ∃y, |y| ≤ |x|k1 , (x, y) ∈ R1}
L = {x : ∃z, |z| ≤ |x|k2 , (x, z) ∈ R2}

On input x, our strong nondeterministic Turing Machine M will guess y and guess z. If
(x, y) ∈ R1 then we accept; if (x, z) ∈ R2 then we reject; otherwise we output “?”. The above
equations imply that if x ∈ L then some path leads to accept and if x 6∈ L then some path
leads to reject, as required. Moreover, when x ∈ L, no computation path rejects (because
that would imply that there exists a z for which (x, z) ∈ R2) and when x 6∈ L no computation
path accepts (because that would imply that there exists a y for which (x, y) ∈ R1).

In the other direction, suppose we have strong nondeterministic Turing Machine M that
decides L in time nk. We can modify it so that whenever it would have output “?” it instead
rejects. This gives an ordinary non-deterministic Turing Machine that decides L, and so
L ∈ NP. We can also modify it so that whenever it would have rejected it instead accepts
and vice versa, and whenever it would have output “?” it instead rejects. This gives an
ordinary non-deterministic Turing Machine that decides L, and so L ∈ coNP. We conclude
that L ∈ NP ∩ coNP.

2. (a) Recall that R is the reduction from SAT to a unary languages U ⊆ 1∗. Consider
x = R(φ), where φ is a formula in the self-reduction tree. If x 6∈ 1∗, then we can easily
detect this, and we used this observation critically to assign a single color to such strings.
Since every other color was identified with a string in 1∗ of length at most p(n) (where
p(n) is a bound on the length of the string output by R) the total number of colors was
p(n) + 1. If we know only that U is sparse, we have a similar polynomial bound on the
number of “satisfiable” colors, but not on the number of “unsatisfiable” colors, as it is
perfectly legal for R to map unsatisfiable formulas to strings outside U , and we have no
efficient way of detecting these strings and grouping them all into a single color, as we
did with unary languages. Since there may be exponentially many different colors, the
tree-traversal procedure is no longer guaranteed to run in polynomial time.

(b) Let R be the reduction from SAT to S, let φ be an instance of SAT with |φ| = n, and let
q(n) be the polynomial bound on the length of the strings output by R. We perform the
same tree-traversal of the self-reduction tree for φ as we saw in class, identifying colors
with strings output by R, and pruning a given color after we have seen it n + 1 times.
Since R maps unsatisfiable formulas to strings in S, we know that there are at most
p(q(n)) = poly(n) “unsatisfiable” colors. In the case that φ is unsatisfiable, the only
colors are unsatisfiable colors, and so we terminate after visiting at most (n+ 1)p(q(n))

2-1

2-2

nodes. If φ is satisfiable, we may visit up to (n + 1)p(q(n)) unsatisfiable nodes, and n
satisfiable nodes along a path from the root to the first leaf corresponding to a satisfying
assignment, at which point we terminate, again in polynomial time. Thus given the
reduction R from SAT to S we can solve SAT in polynomial time, and therefore P = NP.

(c) If we knew c(|x|) we could nondeterministically guess all of the strings in S of length at
most |x| together with proofs that each is in S, and then accept only if x is not among
those strings. Following essentially this strategy, we will show that Ŝ ∈ NP. Since
S ∈ NP there is a language L ∈ P for which

S = {y : ∃z, |z| ≤ |y|d, (y, z) ∈ L}.

Using this, we describe the following language in NP:

{(x, 1k) : ∃(y(1), y(2), . . . , y(k), z(1), z(2), . . . , z(k)), |y(i)| ≤ |x|, |z(i)| ≤ |y(i)|d,
(x, y(1), y(2), . . . y(k), z(1), z(2), . . . z(k)) ∈W},

where W accepts iff the y(i) are all distinct, (y(i), z(i)) ∈ L for all i, and x is not among
the y(i). Clearly W ∈ P, so the language above is in NP. We claim this language is
Ŝ. If k < c(|x|) then we can guess k distinct strings y(i) from among the c(|x|) strings
of length at most |x| in S, together with proofs z(i) that they are indeed in S, while
avoiding x, and so we will accept (x, 1k) when k < c(|x|). If k = c(|x|) then the only
way we can guess k distinct strings of length at most |x| together with proofs that they
are all in S is if we have guessed exactly the set of strings in |S| of length at most |x|.
This set avoids x iff x 6∈ S. Thus we accept (x, 1k) iff x 6∈ S when k = c(|x|). Finally, if
k > c(|x|) then there is no way to guess k distinct strings of length at most |x| together
with proofs that they are in S, so we will reject (x, 1k) if k > c(|x|). This completes the
proof that Ŝ ∈ NP.

(d) Define the “candidate reduction” Rk(φ) = U(T (φ), 1k). From the previous part we
know that (T (φ), 1k) ∈ Ŝ if k < c(|T (φ)|), regardless of what T (φ) is, so Rk(φ) ∈ S if
k < c(|T (φ)|) as required. Similarly, (T (φ), 1k) 6∈ Ŝ if k > c(|T (φ)|), and so Rk(φ) 6∈ S
if k > c(|T (φ)|). In the case that k = c(|T (φ)|), we have

(T (φ), 1k) ∈ Ŝ ⇔ T (φ) 6∈ S ⇔ φ 6∈ SAT⇔ φ ∈ SAT

and Rk(φ) = U(T (φ), 1k) ∈ S ⇔ (T (φ), 1k) ∈ Ŝ since U is a reduction. We conclude
that when k = c(|T (φ)|), Rk(φ) ∈ S ⇔ φ ∈ SAT, as required.

(e) We need to address a technical issue first:

Lemma 2.1 If language L ⊆ Σ∗ is NP-complete, then language L′ ∈ (Σ∪{#})∗ defined
by

L′ = {x#i : x ∈ L, i ≥ 0}

is NP-complete. If L is sparse then L′ is sparse.

Proof: It is clear that if L is in NP then L′ is as well. And, a reduction from an
arbitrary language A ∈ NP to L is a reduction from A to L′. Finally, note that the

2-3

number of strings in L′ of length at most n is at most the number of strings in L of
length at most n, times n. Thus L′ is sparse if L is.

Thus we may assume without loss of generality that S has the property that x ∈ S iff
x#i ∈ S for all i > 0. This allows us to assume that reduction T has the property that
on all strings φ of length n, the length of T (φ) is the same: since T is a polynomial time
reduction, there is some polynomial bound r(n) on the length of strings it produces on
an input of length n. We can modify T if necessary so that it pads its output with “#”s
up to length exactly r(n). By our assumption on S, this does not change whether the
output of T is in S or not, so T is still a reduction.

Now, we proceed with the problem. Assume S is NP-complete, and let φ be an instance
of SAT with |φ| = n. Let T be the reduction from SAT to S, and let q(n) be the
polynomial bound on the length of a string output by Rk on an input of length n, for
any k ≤ p(|T (φ)|). We will run the procedure from part (b) once for each k between
1 and p(|T (φ)|), using Rk as a “candidate reduction” from SAT to S in the k-th run.
By the previous part, when k = c(|T (φ)|) the “candidate reduction” Rk will actually
be a legitimate reduction from SAT to S for strings of length n. Since we only apply
Rk on strings of length n (possibly after the minor modification of the solution to part
(b) mentioned in the problem) and using our assumption that T outputs strings whose
length depends only on the length of T ’s input, our analysis in part (b) applies, and
we will find a satisfying assignment after at most (n + 1)p(q(n)) + n steps if there is
one. For the other runs with k 6= c(|T (φ)|) we don’t care what happens; we just need
to be sure to stop every run after (n + 1)p(q(n)) + n steps, which is enough to allow
the “correct” run to finish, and ensure that each run takes polynomial time. Since
we perform p(q(n)) = poly(n) runs, each of which takes polynomial time, the overall
procedure runs in polynomial time and decides SAT. Thus P = NP.

(f) Let S be the sparse language consisting of exactly one string z (it doesn’t matter what
string we choose). S is clearly in NP. If P = NP then we can reduce every language L
in NP to S in the following way: on input x, our reduction decides in polynomial time
whether x ∈ L (remember, we are assuming P = NP); if it is, then we output z; if not,
we output any other string. This shows that S is NP-complete

3. We’ll show that STRONGLY CONNECTED is NL-complete. First, we observe that it is
in NL: we can go through all (ordered) pairs of vertices (x, y) and nondeterministically
guess a path from x to y one vertex at a time (as we did for S-T CONNECTIVITY). We
reject whenever one of these paths fails to actually reach y from x. If the graph is strongly
connected, then some sequence of guesses will succeed, and we will accept; otherwise no
sequence of guesses will succeed (in particular, there will be some pair (x, y) with no directed
path from x to y), and all computation paths will reject.

Now, we reduce S-T CONNECTIVITY (which we know to be NL-complete) to STRONGLY
CONNECTED as follows. Given a directed graph G = (V,E) and vertices s and t we produce
the directed graph G′ = (V,E′) where E′ = E ∪ {(v, s) : v ∈ V } ∪ {(t, v) : v ∈ V }. We can
easily perform this reduction in logspace, as we only need to step through the vertices one by
one, adding the required two edges for each. We claim that G′ is strongly connected if and
only if there is a directed path from s to t in G. (⇐) If there is a directed path from s to t
in G, then to get from v to v′ in G′ we can traverse the edge from v to s, then the directed

2-4

path from s to t, and finally the edge from t to v′. (⇒) If G′ is strongly connected, then in
particular there must be a directed path from s to t in G′, and then there also must be a
directed path from s to t in G, since we only added ingoing edges to s and outgoing edges
to t (which cannot have introduced a directed path from s to t if there was not one to begin
with).

By the claim, we have reduced S-T CONNECTIVITY to STRONGLY CONNECTED in
logspace, and thus STRONGLY CONNECTED is NL-complete. Therefore, if STRONG
CONNECTED is in L, then NL = L. Note that for this conclusion it would have been
sufficient to only prove that STRONGLY CONNECTED is NL-hard.

