
CS 151 Complexity Theory Spring 2023

Problem Set 7

Out: May 25 Due: June 1

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (Papadimitriou). The full honor code guidelines and collaboration policy can be found in the
course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Linearity Testing. Let f : Fn2 → F2 be a function, and suppose that

Pr
x,y

[f(x) + f(y) = f(x+ y)] ≥ 1− δ, (7.1)

where x, y are chosen uniformly in Fn2 . Define f̃ : Fn2 → F2 by

f̃(x) = majorityy(f(x+ y)− f(y)),

where we set f̃(x) = 0 if there is a tie.

(a) Prove that for all x ∈ Fn2 , we have

Pr
y

[f(x+ y)− f(y) = f̃(x)] ≥ 1− 4δ.

Hint: start by relating the probability that the a random voter disagrees with the ma-
jority to the probability that two random voters disagree.

(b) Show that Prx[f(x) 6= f̃(x)] ≤ 2δ. Hint: use Eq. (7.1) and the definition of f̃ .

(c) Assume that δ < 1/14. Prove that f̃ is linear; i.e., for all x, y we have

f̃(x) + f̃(y) = f̃(x+ y).

Hint: Eq. (7.1) gives us

Pr
w,z

[f(w) + f(z) = f(w + z)] ≥ 1− δ

Pr
w,z

[f(x+ w) + f(y + z) = f(x+ y + w + z)] ≥ 1− δ.

Now use part (a) to obtain statements about f̃(x), f̃(y) and f̃(x+ y).

(d) Given a function f : Fn2 → F, the BLR linearity test on f is the following procedure:
pick x, y ∈ Fn2 randomly; f passes the test if f(x) +f(y) = f(x+y). Prove the following
two statements:

7-1

7-2

Completeness: If f is linear, then f passes the test with probability 1.

Soundness: If f passes the test with probability 1−δ, then there exists a linear function
f̃ satisfying Prx[f(x) = f̃(x)] ≥ 1−O(δ).

2. Recall that a clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V with edges between
every pair of vertices in V ′. We know that the language

CLIQUE = {(G, k) : G has a clique of size k}

is NP-complete. You will show that there is some constant δ > 0 for which CLIQUE is NP-
hard to approximate to within N δ in the following sense: if there is an N δ-approximation
algorithm for CLIQUE, then NP = ZPP. Here N is the length of the input (G, k).

The PCP Theorem implies that there is some constant ε > 0 for which given a 3-CNF formula
φ it is NP-hard to distinguish between the following two cases:

YES : φ is satisfiable

NO : every assignment to φ satisfies at most a (1− ε) fraction of the clauses

Below you will describe a randomized transformation from an instance φ into a graph G
whose intended effect is that a YES instance produces a graph with a large clique, while a
NO instance produces a graph with only a very small clique. Here n is the number of variables
in φ.

(a) Suppose φ is a NO instance, and consider the following probabilistic experiment: pick
log2 n clauses from φ uniformly at random, take their conjunction, and call this CNF
φ1; repeat n3 times to get CNFs φ1, φ2, . . . , φn3 . Show that for a fixed assignment A:

Pr[A satisfies at least n3−ε of the φi] < e−n
2
.

Hint: What is the probability that A satisfies a given φi? What is the expected number
of φi satisfied by A? You may want to use the fact that (1− ε)1/ε ≤ 1/e for 1 > ε > 0,
and the Chernoff bound: if X is the sum of independent 0/1 random variables with
expected value E[X] ≤ µ, then Pr[X > 2µ] ≤ e−µ/3.

(b) Argue that the above randomized procedure produces from φ a collection of 3-CNFs
φ1, φ2, . . . , φn3 for which

i. φ is a YES instance ⇒ Pr[∃ assignment A simultaneously satisfying all of the φi] =
1, and

ii. φ is a NO instance ⇒ Pr[no assignment satisfies more than n3−ε of the φi] ≥ 1/2.

(c) Describe an efficient deterministic procedure to construct a graph G from the collection
of 3-CNFs in part (b) for which

i. ∃ assignment A simultaneously satisfying all of the φi ⇒ G has a clique of size n3,
and

ii. no assignment satisfies more than n3−ε of the φi ⇒ no clique in G has size greater
than n3−ε.

7-3

(d) Prove that there exists a constant δ > 0 for which an N δ-approximation algorithm for
CLIQUE implies that NP = ZPP, where N is the length of the input.

3. Optional for extra credit. This problem concerns the circuit class ACC: polynomial-
sized, constant-depth circuits with unbounded fan-in AND and OR gates, NOT gates, and
unbounded fan-in MOD-m gates, which output 1 iff the number of true inputs to the gate
is divisible by m. This appears to be a very weak class (e.g., without the MOD-m gates,
it is known that it incapable of even computing the parity function). However, until late
2010, no one knew how to prove that NEXP is not in ACC! This problem follows Ryan
William’s breakthrough result that finally shows that NEXP is not in ACC. You will prove

the slightly easier statement that ENP is not in ACC, which contains all of the main ideas.
Recall that E = ∪k≥1TIME(2kn).

(a) We say “ACC-type circuit” to mean a constant-depth circuit with the same allowed gates
as for ACC, but not necessarily polynomial-size. We use quasipoly(n) as shorthand for

2log
O(1) n. Using the following theorem, show how to obtain a list of all evaluations of an

ACC-type circuit C with n inputs in time O(2n ·poly(n, log |C|)+quasipoly(|C|)). Note
this is much better than the O(2n · |C|) running time of the obvious algorithm when |C|
is large.

Theorem 7.1 Given an ACC-type circuit C, there is a deterministic procedure running
in time O(quasipoly(|C|) + 2n · poly(n)) that produces from C a multilinear polynomial
f with nonnegative coefficients (presented as a vector of 2n coefficients) and a poly-time
computable function T : {0, 1, . . . , `} → {0, 1}, with ` ≤ quasipoly(|C|), such that C(x)
= T(f(x)). Here we are identifying Boolean values FALSE and TRUE with 0, 1 ∈ Z.

Hint: First compute f(x) for all x ∈ {0, 1}n with O(n2n) arithmetic operations using a
divide and conquer algorithm.

(b) Give a deterministic algorithm that is given an ACC circuit C with n inputs and

determines if it is satisfiable in time O(2n−n
δ
) for some constant δ > 0. Hint: plug

in all possible values for the first n′ < n variables to form new ACC-type circuit.

(c) We know from Lecture 2 that succinct 3-sat is NEXP-complete. A more careful
reduction gives the following: for every language L ∈ NTIME(2n), there is a reduction
from L to succinct 3-sat mapping instances x of length n to circuits Cx of polynomial
size, with m = n+ 5 log n inputs. Such a circuit succinctly encodes a 3-SAT formula φx
of length 2m.

Show that if ENP ⊆ ACC, then succinct 3-sat has succinct witnesses: for every
x ∈ L, there is an ACC circuit Wx such that assigning the i-th variable in φx the value
Wx(i) satisfies φx.

(d) Show that if ENP ⊆ ACC, then every language L ∈ NTIME(2n) can be simulated in

NTIME(2n−n
δ
) for some constant δ > 0, contradicting the NTIME hierarchy.

Hint: given the circuit Cx from the previous part, guess ACC circuits D (intended to
be equivalent to Cx), G (intended to encode Cx gate by gate – i.e., given the index of
a gate, it output the type of gate, and the indices of its at most 2 inputs), V (intended

7-4

to encode the gate-by-gate evaluation of Cx – i.e., given an input z and the index of a
gate, it output that gate’s value when Cx is evaluated on z) and Wx (intended to be a
succinct witness for φx). Use part (b) twice, once to verify that D is equivalent to Cx
(using G and V to express this equivalence using only ACC circuits) and once to verify
that Wx encodes a satisfying assignment to φx.

