
CS 151 Complexity Theory Spring 2023

Problem Set 2

Out: April 13 Due: April 20

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (Papadimitriou). The full honor code guidelines and collaboration policy can be found in the
course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. A strong nondeterministic Turing Machine has, in addition to its qaccept and qreject states,
a special state q?. Such a Turing Machine accepts its input if all computation paths lead to
qaccept and q? states, and it rejects its input if all computation paths lead to qreject and q?
states. Moreover, on every input, there is at least one computation path leading to qaccept
or qreject. Show that the class of languages decided1 by a strong nondeterministic Turing
Machine in polynomial time is exactly NP ∩ coNP.

2. In this problem you will prove Mahaney’s Theorem: a sparse language S cannot be NP-
complete unless P = NP. Throughout this problem, S is a sparse language in NP with a
polynomial bound p(n) on the number of strings of length at most n.

(a) Explain briefly where the proof of the special case of Mahaney’s Theorem for unary
languages (from class) breaks down for sparse languages.

(b) Show that if SAT reduces to S in polynomial time via reduction R, then a procedure
very similar to the one for unary languages from class decides SAT in polynomial time,
and hence implies P = NP.

(c) Define c(n) to be the exact number of strings of length at most n in S (clearly c(n) ≤ p(n)
for all n). Argue that the following language is in NP:

Ŝ = {(x, 1k) : k < c(|x|) or (k = c(|x|) and x 6∈ S)}.

Hint: do not try to compute c(|x|); rather, focus on describing an NP algorithm that de-
cides Ŝ properly under the assumption that k = c(|x|), and then see what your algorithm
does when k 6= c(|x|).

(d) Finally we assume S is NP-complete. Thus, everything in NP reduces to S, and we
give names to two of these reductions: let T be a polynomial-time reduction from SAT

1A language is decided (as usual) if every input is either accepted or rejected according to the accept/reject criteria
for this type of machine.

2-1

2-2

to S, and let U be a polynomial-time reduction from Ŝ to S. Using T and U , describe
a family of “candidate reductions from SAT to S,” Rk, with the following properties:

Rk(φ) ∈ S if k < c(|T (φ)|)
Rk(φ) ∈ S ⇔ φ ∈ SAT if k = c(|T (φ)|)

Rk(φ) 6∈ S if k > c(|T (φ)|)

(e) Using parts (b) and (d), prove Mahaney’s Theorem. To solve a technical problem, you
may want to prove and make use of the following lemma:

Lemma 2.1 If language L ⊆ Σ∗ is NP-complete, then language L′ ∈ (Σ∪{#})∗ defined
by

L′ = {x#i : x ∈ L, i ≥ 0}

is NP-complete. If L is sparse then L′ is sparse.

This allows one to modify the NP-complete language S so that the reduction T , when
applied to strings of length n, always outputs strings of a particular length.

(f) Argue that if P = NP, then there are sparse NP-complete languages (under polynomial-
time, many-one reducibility).

3. A directed graph G = (V,E) is strongly connected if for every pair of vertices (x, y) there
is a directed path from x to y and a directed path from y to x. Consider STRONGLY
CONNECTED, the language of graphs G that are strongly connected. Either show that this
problem is in L, or prove a complexity consequence of such a containment.

