
CS 151 Complexity Theory Spring 2023

Midterm

Out: May 4 Due: May 11 at 1pm

This is a midterm. Collaboration is not allowed. You may consult the course notes and the text
(Papadimitriou), but not any other source or person. The full honor code guidelines can be found
in the course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Show that coNEXP ⊆ NEXP/(n+1). Here the “/(n+1)” means that the nondeterministic
machine takes exactly (n+1) bits of advice on an input of length n. Hint: use an idea similar
to one you used for problem 2 on Problem Set 2.

2. Let f : {0, 1}n → {0, 1} be an arbitrary function, and consider the following scenario involving
two parties, Alice and Bob. Alice is given an input x for which f(x) = 0 and Bob is given an
input y for which f(y) = 1. They take turns sending bits to each other, and at the end of the
protocol they must announce an index i between 1 and n on which x and y differ, i.e., xi 6= yi.
Formally, in the first round Alice sends A1(x) = a1 to Bob; Bob sends B1(y, a1) = b1 to Alice;
Alice sends A2(x, b1) = a2; Bob sends B2(x, a1, a2) = b2; Alice sends A3(x, b1, b2) = a3; and so
on. In odd steps Alice sends a message that depends on her input x and the messages she has
received so far; in even steps Bob sends a message the depends on his input y and the messages
he has received so far. In the end, after k rounds Alice computes RA(x, b1, b2, . . . , bk) and Bob
computes RB(y, a1, a2, . . . , ak), and these final function evaluations should both produce the
desired index i, on which xi 6= yi. The protocol must work for all pairs of inputs x ∈ f−1(0)
and y ∈ f−1(1); the functions Ai and Bi together with RA and RB define a protocol for f .

The communication complexity for f , denoted C(f), is the minimum, over all protocols for
f , of the number of bits exchanged during the protocol. Let D(f) denote the minimum, over
all fan-in two (∧,∨,¬) Boolean circuits that compute f , of the depth of the circuit. Below
you will prove the startling fact that these two quantities are essentially the same!

(a) Show that C(f) ≤ c1D(f) + d1, where c1 and d1 are constants that donot depend on f .
Hint: use induction on the depth of a minimum-depth circuit for f .

(b) Show that D(f) ≤ c2C(f) + d2, where c2 and d2 are constants that do not depend on f .
Hint: prove a stronger statement as follows. For every set X ⊆ f−1(0) and Y ⊆ f−1(1)
we say that a protocol for f on X,Y is a protocol that is only required to work on input
pairs x ∈ X and y ∈ Y (so a protocol for f as defined above is a protocol for f on
f−1(0), f−1(1)). Define CX,Y (f) to be the minimum, over all protocols for f on X,Y ,
of the number of bits exchanged during the protocol. Prove that for all X ⊆ f−1(0)
and Y ⊆ f−1(1) there is a circuit with depth at most c2CX,Y (f) + d2 that outputs 0 on
inputs x ∈ X and 1 on inputs y ∈ Y .

0-1



0-2

3. A branching program is a directed acyclic graph with three distinguished nodes, called start,
accept, and reject. Every node except accept and reject is labeled by a positive integer i ≤ n,
and has exactly two outgoing edges, one labeled “0” and the other labeled “1”. An input
x = x1x2 . . . xn defines a path from the start node as follows: at a node labeled i, we follow
the outgoing edge whose label coincides with bit xi in the input. The path terminates at a
sink node (which is either accept or reject) and the input is accepted or rejected accordingly.

Recall that L/poly is the class of languages decidable by a Turing machine in O(log n) space
with poly(n) bits of advice. Show that L/poly is exactly the class of languages decided by
polynomial-size branching programs.

4. Show that NP ⊆ BPP implies NP = RP. Hint: first use error reduction to reduce the error
probability of the BPP machine.

5. (a) Let f be a family of one-way permutations, and let b = {bn} be a hard bit for f−1.
Assume that both f and b are computable in polynomial time. Use f and b to describe
a language L for which L ∈ (NP ∩ coNP)−BPP.

(This shows that the assumption we used to construct the BMY pseudo-random gen-
erator placed a priori bounds on the power of BPP – it presumed that BPP was not
powerful enough to simulate NP ∩ coNP.)

(b) Fix a constant δ, and let g = {gn} be a uniform family of functions for which:

• each gn maps t = O(log n) bits to m = nδ bits, and is computable in poly(n) time,
and

• for all circuits C : {0, 1}m → {0, 1} of size at most m,∣∣∣∣∣ Pr
y∈{0,1}m

[C(y) = 1]− Pr
z∈{0,1}t

[C(gn(z)) = 1]

∣∣∣∣∣ < 1/6.

Use g to describe a language L ∈ E which does not have circuits of size 2εn, for some
constant ε > 0. Hint: refer to a function family obtained by truncating the output of g
to t+ 1 bits.

(Notice that g is a “Nisan-Wigderson style” pseudo-random generator, which we were
able to construct based on the assumption that there is some language in E that does not
have circuits of size 2εn for some constant ε. This problem shows that this assumption
is also necessary for the existence of such generators.)


