

1

Blum-Micali-Yao PRG

- Initial goal: for all $1>\delta>0$, we will build a family of PRGs $\left\{\mathrm{G}_{\mathrm{m}}\right\}$ with:

$$
\begin{array}{ll}
\text { output length } \mathbf{m} & \text { fooling size } \mathbf{s}=m \\
\text { seed length } \mathbf{t}=\mathrm{m}^{\bar{\delta}} & \text { running time } \mathrm{m}^{\mathrm{c}}
\end{array}
$$ error $\boldsymbol{\varepsilon}<1 / 6$

- implies: BPP $\subseteq \cap_{\bar{\delta}>0} \operatorname{TIME}\left(2^{n \bar{\delta}}\right) \subsetneq E X P$
- Why? simulation runs in time $\mathrm{O}\left(\mathrm{m}+\mathrm{m}^{c}\right)\left(2^{\mathrm{m}^{\delta}}\right)=\mathrm{O}\left(2^{\mathrm{m}^{2 \delta}}\right)=\mathrm{O}\left(2^{\mathrm{n}^{2 k \delta}}\right)$
may 2.2023
CS151 Lecture 9
3

Blum-Micali-Yao PRG

- PRGs of this type imply existence of one-wayfunctions
- we'll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function family $f=\left\{f_{n}\right\}, f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
$-f_{n}$ computable in poly(n) time

- for every family of poly-size circuits $\left\{\mathrm{C}_{n}\right\}$ $\operatorname{Pr}_{x}\left[\mathrm{C}_{\mathrm{n}}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right) \in \mathrm{f}_{\mathrm{n}}{ }^{-1}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)\right] \leq \varepsilon(\mathrm{n})$
$-\varepsilon(n)=o\left(n^{-c}\right)$ for all c
May 2, 2023
CS151 Lecture 9

4

Blum-Micali-Yao PRG

- believe one-way functions exist
- e.g. integer multiplication, discrete log, RSA (w/ minor modifications)

Definition: One Way Permutation: OWF in which f_{n} is 1-1

- can simplify " $\operatorname{Pr}_{\mathrm{x}}\left[\mathrm{C}_{n}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right) \in \mathrm{f}_{\mathrm{n}}{ }^{-1}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)\right] \leq \varepsilon(\mathrm{n})$ " to $\operatorname{Pr}_{y}\left[\mathrm{C}_{\mathrm{n}}(\mathrm{y})=\mathrm{f}_{\mathrm{n}}{ }^{-1}(\mathrm{y})\right] \leq \varepsilon(\mathrm{n})$

May 2,2023
CS151 Lecture 9
5
5

First attempt

- attempt at PRG from OWP f:
$-\mathrm{t}=\mathrm{m}^{\delta}$
$-y_{0} \in\{0,1\}^{t}$
$-y_{i}=f_{t}\left(y_{i-1}\right)$
$-G\left(y_{0}\right)=y_{k-1} y_{k-2} y_{k-3} \ldots y_{0}$
$-k=m / t$
- computable in time at most

$$
\mathrm{ktc}^{c}<\mathrm{mt}^{\mathrm{c}-1}=\mathrm{m}^{\mathrm{c}}
$$

May 2, 2023
CS151 Lecture 9
6

First attempt

- output is "unpredictable":
- no poly-size circuit C can output y_{i-1} given $y_{k-1} y_{k-2} y_{k-3} \ldots y_{i}$ with non-negl. success prob.
- if C could, then given y_{i} can compute $y_{k-1}, y_{k-2}, \ldots, y_{i+2}, y_{i+1}$ and feed to C
- result is poly-size circuit to compute

$$
y_{i-1}=f_{t}^{-1}\left(y_{i}\right) \text { from } y_{i}
$$

- note: we're using that f_{t} is 1-1

May 2, 2023
CS151 Lecture 9
7

First attempt

```
attempt:
- }\mp@subsup{y}{0}{}\in{0,1}
    - yi=ft(yi-1)
    -
- \(G\left(y_{0}\right)=\)
\(y_{k-1} y_{k-2} y_{k-3} \ldots y_{0}\)
``` \(\qquad\)

8

\section*{First attempt}
- one problem:
- hard to compute \(y_{i-1}\) from \(y_{i}\)
- but might be easy to compute single bit (or several bits) of \(y_{i-1}\) from \(y_{i}\)
- could use to build small circuit \(C\) that distinguishes G's output from uniform distribution on \(\{0,1\} \mathrm{m}\)

May 2,2023
CS151 Lecture 9
9

\section*{First attempt}
- second problem
- we don't know if "unpredictability" given a prefix is sufficient to meet fooling requirement: \(\left|\operatorname{Pr}_{y}[C(y)=1]-\operatorname{Pr}_{z}[C(G(z))=1]\right| \leq \varepsilon\)

May 2, 2023
CS151 Lecture 9 \({ }^{10}\)

10

\section*{Hard bits}
- If \(\left\{f_{n}\right\}\) is one-way permutation we know: - no poly-size circuit can compute \(f_{n}{ }^{-1}(y)\) from \(y\) with non-negligible success probability
\[
\operatorname{Pr}_{y}\left[C_{n}(y)=f_{n}{ }^{-1}(y)\right] \leq \varepsilon^{\prime}(n)
\]
- We want to identify a single bit position j for which:
- no poly-size circuit can compute (\(\left.f_{n}^{-1}(x)\right)\), from \(x\) with non-negligible advantage over a coin flip
\(\operatorname{Pr}_{y}\left[C_{n}(y)=\left(f_{n}{ }^{-1}(y)\right)_{j}\right] \leq 1 / 2+\varepsilon(n)\)
May 2,2023
CS151 Lecture 9 \({ }^{11}\)
11

\section*{Hard bits}
- For some specific functions \(f\) we know of such a bit position j
- More general:
function \(h_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\)
rather than just a bit position j .

May 2, 2023
CS151 Lecture 9
\({ }^{12}\)

\section*{Goldreich-Levin}
- To get a generic hard bit, first need to modify our one-way permutation
- Define \(f_{n}^{\prime}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}\) as:
\[
f_{n}^{\prime}(x, y)=\left(f_{n}(x), y\right)
\]
Goldreich-Levin
- To get a generic hard bit, first need to
modify our one-way permutation
- Define \(f_{n}^{\prime}:\{0,1\}^{n} x\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}\) as:
\(f_{n}^{\prime}(x, y)=\left(f_{n}(x), y\right)\)
May 2,2023
cs151 Lecture 9

14

\section*{Goldreich-Levin}

\section*{Distinguishers and predictors}
- Distribution D on \(\{0,1\}^{n}\)
- D \(\varepsilon\)-passes statistical tests of size s if for all circuits of size s:
\[
\left|\operatorname{Pr}_{y-u_{n}}[C(y)=1]-\operatorname{Pr}_{y}+\Delta[C(y)=1]\right| \leq \varepsilon
\]
- circuit violating this is sometimes called an
efficient "distinguisher" efficient "distinguisher"
\begin{tabular}{lrl}
May 2, 2023 & CS151 Lecture 9 & \({ }^{17}\) \\
\hline
\end{tabular}
17
- inner-product of \(n\)-vectors \(x\) and \(y\) in GF(2)

Theorem (G-L): for every function \(\mathrm{f}, \mathrm{GL}\) is a
hard bit for \(\mathrm{f}^{\prime}\). (proof: problem set)

May 2,2023
CS151 Lecture 9
16
\(\qquad\)
- The Goldreich-Levin function:
\[
\operatorname{GL}_{2 n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}
\]
is defined by:
\[
\mathrm{GL}_{2 n}(\mathrm{x}, \mathrm{y})=\oplus_{\mathrm{i}: \mathrm{y}_{\mathrm{i}}=1 \mathrm{X}_{\mathrm{i}}}
\]
- parity of subset of bits of \(x\) selected by 1's of \(y\)

\section*{Goldreich-Levin}
- Two observations:
\(f_{n}^{\prime}(x, y)=\left(f_{n}(x), y\right)\)
\(-f^{\prime}\) is a permutation if \(f\) is
- if circuit \(\mathrm{C}_{\mathrm{n}}\) achieves
\[
\operatorname{Pr}_{x, y}\left[C_{n}(x, y)=f_{n}^{\prime}{ }_{n}^{-1}(x, y)\right] \geq \varepsilon(n)
\]

\section*{then for some \(y^{*}\)}
\(\operatorname{Pr}_{\mathrm{x}}\left[\mathrm{C}_{\mathrm{n}}\left(\mathrm{x}, \mathrm{y}^{*}\right)=\mathrm{f}_{n^{\prime}-1}\left(\mathrm{x}, \mathrm{y}^{*}\right)=\left(\mathrm{f}_{\mathrm{n}}-1(\mathrm{x}), \mathrm{y}^{*}\right)\right] \geq \varepsilon(\mathrm{n})\)
and so \(f^{\prime}\) is a one-way permutation if \(f\) is.
may 2,2023
CS151 Lecture 9

15

\section*{Distinguishers and predictors}
- D \(\boldsymbol{\varepsilon}\)-passes prediction tests of size s if for all circuits of size s:
\[
\operatorname{Pr}_{\mathrm{r}_{y}-\mathrm{D}}\left[C\left(\mathrm{y}_{1,2, \ldots, \ldots,-1}\right)=\mathrm{y}_{\mathrm{i}}\right] \leq 1 / 2+\varepsilon
\]
- circuit violating this is sometimes called an efficient "predictor"
- predictor seems stronger
- Yao showed essentially the same!
- important result and proof ("hybrid argument")

May2, 2023
cS151 Lecture 9
18
18

\section*{Distinguishers and predictors}

Theorem (Yao): if a distribution D on \(\{0,1\}^{n}\) \((\varepsilon / n)\)-passes all prediction tests of size s, then it \(\varepsilon\)-passes all statistical tests of size \(\mathrm{s}^{\prime}=\mathrm{s}-\mathrm{O}(\mathrm{n})\).

May 2, 2023
CS151 Lecture 9

19

Distinguishers and predictors
- Proof:
- idea: proof by contradiction
- given a size s' distinguisher C :
\[
\left|\operatorname{Pr}_{y}-u_{n}[C(y)=1]-\operatorname{Pr}_{y}-D[C(y)=1]\right|>\varepsilon
\]
- produce size s predictor P :
\[
\operatorname{Pr}_{y^{\leftarrow}-\mathrm{D}}\left[\mathrm{P}\left(\mathrm{y}_{1,2, \ldots, \mathrm{i-1}}\right)=\mathrm{y}_{\mathrm{i}}\right]>1 / 2+\varepsilon / \mathrm{n}
\]
- work with distributions that are "hybrids" of the uniform distribution \(U_{n}\) and \(D\)

May 2,2023
CS151 Lecture 9
\({ }^{20}\)
20

\section*{Distinguishers and predictors}
- Hybrid distributions

May 2, 2023
CS151 Lecture 9
\({ }^{22}\)
22

Distinguishers and predictors
- Define: \(p_{i}=\operatorname{Pr}_{y}+D_{i}[C(y)=1]\)
- Note: \(p_{0}=\operatorname{Pr}_{y^{-}-u_{n}}[C(y)=1] ; \quad p_{n}=\operatorname{Pr}_{y^{-}-D}[C(y)=1]\)
- by assumption: \(\quad \varepsilon<\left|p_{n}-p_{0}\right|\)
- triangle inequality: \(\left|p_{n}-p_{0}\right| \leq \Sigma_{1 \leq i \leq n}\left|p_{i}-p_{i-1}\right|\)
- there must be some i for which
\[
\left|p_{i}-p_{i-1}\right|>\varepsilon / n
\]
- WLOG assume \(p_{i}-p_{i-1}>\varepsilon / n\)
- can invert output of C if necessary CS151 Lecture 9

23

21

\section*{Distinguishers and predictors}
- given a size s' distinguisher C:
\[
\left|\operatorname{Pr}_{y}-u_{n}[C(y)=1]-\operatorname{Pr}_{y}-\Delta[C(y)=1]\right|>\varepsilon
\]
- define \(\mathrm{n}+1\) hybrid distributions
- hybrid distribution \(\mathrm{D}_{\mathrm{i}}\) :
- sample \(b=b_{1} b_{2} \ldots b_{n}\) from \(D\)
- sample \(r=r_{1} r_{2} \ldots r_{n}\) from \(U_{n}\)
- output:
\(b_{1} b_{2} \ldots b_{i} r_{i+1} r_{i+2} \ldots r_{n}\)
\(\begin{array}{ll}\text { May } 2,2023 & \text { CS151 Lecture } 9\end{array}\)

Distinguishers and predictors
- define distribution \(D_{i}^{\prime}\) to be \(D_{i}\) with \(i\)-th bit flipped
\(-p_{i}^{\prime}=\operatorname{Pr}_{y^{\prime} \div D_{i}}[C(y)=1]\)

- notice:
\(D_{i-1}=\left(D_{i}+D_{i}{ }^{\prime}\right) / 2 \quad p_{i-1}=\left(p_{i}+p_{i}{ }^{\prime}\right) / 2\)
May 2, 2023
CS151 Lecture 9
24

\section*{Distinguishers and predictors}
- randomized predictor \(\mathrm{P}^{\prime}\) for \(\mathrm{ith}^{\text {h }}\) bit:
- input: \(u=y_{1} y_{2} \ldots y_{i-1} \quad\) (which comes from \(D\))
- flip a coin: \(\mathbf{d} \in\{0,1\}\)
\(-w=w_{i+1} w_{i+2} \ldots w_{n} \leftarrow U_{n-i}\)
- evaluate C(udw)
- if 1 , output d ; if 0 , output \(\neg d\)

Claim:
\(\operatorname{Pr}_{y}-D, d, w-u_{n-i}\left[P^{\prime}\left(y_{1} \ldots i-1\right)=y_{i}\right]>1 / 2+\varepsilon / n\).
May2 2023
cs151 Leture 9
25

Distinguishers and predictors
- \(P^{\prime}\) is randomized procedure
- there must be some fixing of its random bits \(d, w\) that preserves the success prob.
- final predictor \(P\) has \(\mathrm{d}^{*}\) and \(w^{*}\) hardwired:

Distinguishers and predictors
- Proof of claim:
\(u=y_{1} y_{2} \ldots y_{i-1}\)
\(\operatorname{Pr}_{y}-D_{d, w}+U_{n-i}\left[P^{\prime}\left(y_{1} \ldots j-1-1\right)=y_{i}\right]=\)
\(\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right] \operatorname{Pr}[C(u, d, w)=1]\)
\(+\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right] \operatorname{Pr}[C(u, d, w)=0]\)
\(=\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]\left(p_{i-1}\right)\)
\(+\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right]\left(1-p_{i-1}\right)\)

May 2, 2023
CS151 Lecture 9
27

Distinguishers and predictors

28

\section*{Distinguishers and predictors}
- Success probability:
\(\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]\left(p_{i-1}\right)+\operatorname{Pr}\left[y_{i}=-d \mid C(u, d, w)=0\right]\left(1-p_{i-1}\right)\)
- We know:
\(-\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]=p_{i} /\left(2 p_{i-1}\right)\)
\(-\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right]=\left(1-p_{i}^{\prime}\right) / 2\left(1-p_{i-1}\right)\)
\(-p_{i-1}=\left(p_{i}+p_{i}^{\prime}\right) / 2\)
\(-p_{i}-p_{i-1}>\varepsilon / n\)
\(p_{i}^{\prime} / 2=p_{i-1}-p_{i} / 2\)
- Conclude:
\(\operatorname{Pr}\left[P^{\prime}\left(y_{1} \ldots c_{i-1}\right)=y_{i}\right]=1 / 2+\left(p_{i}-p_{i}{ }^{\prime}\right) / 2\) \(=1 / 2+p_{i} / 2-\left(p_{i-1}-p_{i} / 2\right)=1 / 2+p_{i}-p_{i-1}>1 / 2+\varepsilon / n\).

May 2,2023
CS151 Lecture 9 29

29

\section*{The BMY Generator}
- Recall goal: for all \(1>\delta>0\), family of PRGs \(\left\{G_{m}\right\}\) with
output length \(\mathbf{m} \quad\) fooling size \(\mathbf{s}=\mathrm{m}\) seed length \(\mathbf{t}=\mathrm{m}^{\delta} \quad\) running time \(\mathrm{m}^{\mathrm{c}}\) error \(\boldsymbol{\varepsilon}<1 / 6\)
- If one way permutations exist then WLOG there is OWP \(\mathrm{f}=\left\{\mathrm{f}_{\mathrm{n}}\right\}\) with hard bit \(\mathrm{h}=\left\{\mathrm{h}_{n}\right\}\)

May 2, 2023
CS151 Lecture 9
30

31

\section*{The BMY Generator}

Theorem (BMY): for every \(\delta>0\), there is a constant c s.t. for all d, e, \(G^{\delta}\) is a PRG with error \(\varepsilon<1 /\) m \(^{\text {d }}\)
fooling size \(\mathbf{s}=\mathrm{m}^{\mathrm{e}}\)
running time \(\mathrm{m}^{\mathrm{c}}\)
- Note: stronger than we needed
- sufficient to have \(\boldsymbol{\varepsilon}<1 / 6\); \(\mathbf{s}=\mathrm{m}\)

May 2,2023
CS151 Lecture 9
\({ }^{32}\)
32

33

\section*{The BMY Generator}
```

```
Generator G}\mp@subsup{G}{}{\delta}={\mp@subsup{G}{}{\delta}\mp@subsup{m}{m}{}}
```

```
Generator G}\mp@subsup{G}{}{\delta}={\mp@subsup{G}{}{\delta}\mp@subsup{m}{m}{}}
 -t=m}\mp@subsup{m}{}{\boldsymbol{j}};\mp@subsup{y}{0}{}\in{0,1\mp@subsup{}}{}{\dagger};\quad\mp@subsup{y}{i}{}=\mp@subsup{f}{+}{}(\mp@subsup{y}{i-1}{});\quad\mp@subsup{b}{i}{}=\mp@subsup{h}{+}{}(\mp@subsup{y}{i}{}
```

    -t=m}\mp@subsup{m}{}{\boldsymbol{j}};\mp@subsup{y}{0}{}\in{0,1\mp@subsup{}}{}{\dagger};\quad\mp@subsup{y}{i}{}=\mp@subsup{f}{+}{}(\mp@subsup{y}{i-1}{});\quad\mp@subsup{b}{i}{}=\mp@subsup{h}{+}{}(\mp@subsup{y}{i}{}
    ```
 -Gom}(\mp@subsup{y}{0}{})=\mp@subsup{b}{m-1}{}\mp@subsup{b}{m-2}{}\mp@subsup{b}{m-3}{m}\ldots\mp@subsup{b}{0}{
```

- Proof:
- computable in time at most

$$
\mathrm{mt}^{c}<\mathrm{m}^{\mathrm{c}+1}
$$

- assume $G^{\delta}$ does not ( $1 / \mathrm{m}^{\mathrm{d}}$ )-pass statistical test $C=\left\{\mathrm{C}_{\mathrm{m}}\right\}$ of size m :
$\left|\operatorname{Pr}_{y^{\leftarrow}-u_{m}}[C(y)=1]-\operatorname{Pr}_{z^{\leftarrow}-\mathrm{D}}[C(z)=1]\right|>1 / \mathrm{m}^{\mathrm{d}}$
May $2,2023 \quad$ CS151 Leecture 9
$\qquad$ -


## The BMY Generator

```
Generator G}\mp@subsup{\mathcal{S}}{}{\delta}={\mp@subsup{G}{}{\delta}\mp@subsup{}{m}{\prime}}
 -t=m}\mp@subsup{m}{}{\delta};\mp@subsup{y}{0}{}\in{0,1};;\mp@subsup{y}{i}{}=\mp@subsup{f}{+}{}(\mp@subsup{y}{i-1}{});\mp@subsup{b}{i}{}=\mp@subsup{h}{+}{}(\mp@subsup{y}{i}{}
 -G
```

- transform this distinguisher into a predictor $P$ of size $\mathrm{m}^{\mathrm{e}}+\mathrm{O}(\mathrm{m})$
$\operatorname{Pr}_{y}\left[P\left(b_{m-1} \ldots b_{m-i}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d+1}$
way 2,2023


## The BMY Generator

Generator $G^{\delta}=\left\{G^{\delta}{ }_{m}\right\}$ :
$-t=m^{\delta} ; y_{0} \in\{0,1\}^{\dagger} ; y_{i}=f_{+}\left(y_{i-1}\right) ; \quad b_{i}=h_{+}\left(y_{i}\right)$ $-G^{0} m\left(y_{0}\right)=b_{m-1} b_{m-2} b_{m-3} \ldots b_{0}$

- a procedure to compute $h_{t}\left(f_{i}-1(y)\right.$
- set $y_{m-i}=y ; \quad b_{m-i}=h_{t}\left(y_{m-i}\right)$
- compute $y_{j}, b_{j}$ for $\mathrm{j}=\mathrm{m}-\mathrm{i}+1, \mathrm{~m}-\mathrm{i}+2 \ldots, \mathrm{~m}-1$ as above - evaluate $P\left(b_{m-1} b_{m-2} \ldots b_{m-1}\right)$
- fa permutation implies $b_{m-1} b_{m-2}$... $b_{m-i}$ distributed as (prefix of) output of generator: $\operatorname{Pr}_{y}\left[P\left(b_{m-1} b_{m-2} \ldots b_{m-1}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d+1}$

May 2,2023
CS151 Lecture 9
${ }^{35}$

35

## The BMY Generator

```
Generator G}\mp@subsup{\mathcal{G}}{}{\delta}={\mp@subsup{\mathcal{G}}{m}{\delta}}
```

Generator G}\mp@subsup{\mathcal{G}}{}{\delta}={\mp@subsup{\mathcal{G}}{m}{\delta}}
-t = m
-t = m
-G

```
 -G
```

            \(\operatorname{Pr}_{y}\left[P\left(b_{m-1} b_{m-2} \ldots b_{m-i}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d+}\)
            What is \(\mathrm{b}_{\mathrm{m}-\mathrm{i}-1}\) ?
                    \(b_{m-i-1}=h_{t}\left(y_{m-i-1}\right)=h_{t}\left(f_{t}^{-1}\left(y_{m-i}\right)\right)=h_{t}\left(f_{t}^{-1}(y)\right)\)
            - We have described a family of polynomial-size
                circuits that computes \(h_{t}\left(f_{t}{ }^{-1}(y)\right)\) from \(y\) with success
                greater than \(1 / 2+1 /\) poly \((m)\)
            Contradiction.
    May $2,2023 \quad$ CS151 Lecture 9
36


37

## Hardness vs. randomness

- We have shown:

If one-way permutations exist then $B P P \subseteq \cap_{\delta>0} \operatorname{TIME}\left(2^{n^{\delta}}\right) \subsetneq E X P$

- simulation is better than brute force, but just barely
- stronger assumptions on difficulty of inverting OWF lead to better simulations...

| may 2,2023 | CS155 Leeture 9 | ${ }_{3}$ |
| :--- | :--- | :--- |

38

## Hardness vs. randomness

- Next, we will show:

If E requires exponential size circuits then $B P P=P$
by building a different generator from different assumptions.

$$
E=U_{k} D T I M E\left(2^{k n}\right)
$$

May2.2023
CS151 Lecture 9
39

## Hardness vs. randomness

- BMY: for every $\delta>0, G^{\delta}$ is a PRG with seed length $\mathbf{t}=\mathrm{m}^{\bar{\delta}}$
output length $\mathbf{m}$
error $\boldsymbol{\varepsilon}<1 / \mathrm{m}^{\mathrm{d}}$ (all d)
fooling size $\mathbf{s}=\mathrm{m}^{\mathrm{e}}$ (all e)
running time $\mathrm{m}^{\mathrm{c}}$
- running time of simulation dominated by $2^{t}$

May 2, 2023
CS151 Lecture 9
${ }^{40}$
40

## Hardness vs. randomness

- To get $B P P=P$, would need $t=O(\log m)$
- BMY building block is one-waypermutation:

$$
f:\{0,1\}^{t} \rightarrow\{0,1\}^{t}
$$

- required to fool circuits of size $\mathrm{m}^{\mathrm{e}}$ (all e)
- with these settings a circuit has time to invert $f$ by brute force!
can't get BPP $=\mathrm{P}$ with this type of PRG may2, 2023

CS151 Lecture 9 ${ }^{41}$

41

## Hardness vs. randomness

- BMY pseudo-random generator:
- one generator fooling all poly-size bounds
- one-way-permutation is hard function
- implies hard function in NP $\cap$ coNP
- New idea (Nisan-Wigderson):
- for each poly-size bound, one generator
- hard function allowed to be in

$$
E=U_{k} D T I M E\left(2^{k n}\right)
$$

May 2, 2023
42

