
1

CS151
Complexity
Theory

Lecture 9
May 2, 2023

1

May 2, 2023

Derandomization

• Pseudo-Random Generator (PRG):

– G is efficiently computable
– “stretches” t bits into m bits
– “fools” small circuits: for all circuits C of size

at most s:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| ≤ ε

seed output stringG
t bits m bits

CS151 Lecture 9 2

2

May 2, 2023

Blum-Micali-Yao PRG

• Initial goal: for all 1 > δ > 0, we will build a
family of PRGs {Gm} with:
output length m fooling size s = m
seed length t = mδ running time mc

error ε < 1/6

• implies: BPP ⊆ ∩δ>0 TIME(2nδ) ⊆ EXP
• Why? simulation runs in time

O(m+mc)(2mδ) = O(2m2δ) = O(2n2kδ)
CS151 Lecture 9 3

3

May 2, 2023

Blum-Micali-Yao PRG

• PRGs of this type imply existence of one-way-
functions
– we’ll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function
family f = {fn}, fn:{0,1}n → {0,1}n

– fn computable in poly(n) time
– for every family of poly-size circuits {Cn}

Prx[Cn(fn(x)) ∈ fn-1(fn(x))] ≤ ε(n)
– ε(n) = o(n-c) for all c

CS151 Lecture 9 4

4

May 2, 2023

Blum-Micali-Yao PRG

• believe one-way functions exist
– e.g. integer multiplication, discrete log, RSA

(w/ minor modifications)

Definition: One Way Permutation: OWF in
which fn is 1-1
– can simplify “Prx[Cn(fn(x)) ∈ fn-1(fn(x))] ≤ ε(n)” to

Pry[Cn(y) = fn-1(y)] ≤ ε(n)

CS151 Lecture 9 5

5

May 2, 2023

First attempt

• attempt at PRG from OWP f:
– t = mδ

– y0 ∈ {0,1}t

– yi = ft(yi-1)
– G(y0) = yk-1yk-2yk-3…y0

– k = m/t
• computable in time at most

ktc < mtc-1 = mc

CS151 Lecture 9 6

6

2

May 2, 2023

First attempt

• output is “unpredictable”:
– no poly-size circuit C can output yi-1 given

yk-1yk-2yk-3…yi with non-negl. success prob.
– if C could, then given yi can compute

yk-1, yk-2, …, yi+2, yi+1 and feed to C
– result is poly-size circuit to compute

yi-1 = ft-1(yi) from yi

– note: we’re using that ft is 1-1

CS151 Lecture 9 7

7

May 2, 2023

First attempt

attempt:
• y0 ∈ {0,1}t

• yi = ft(yi-1)

• G(y0) =
yk-1yk-2yk-3…y0

y0y1y2y3y4y5

ftftftftft

G(y0):

y0y1y2y3y4y5

ft
-1ftft

G’(y3):

ft
-1ft

-1

same distribution!

CS151 Lecture 9 8

8

May 2, 2023

First attempt

• one problem:
– hard to compute yi-1 from yi

– but might be easy to compute single bit (or
several bits) of yi-1 from yi

– could use to build small circuit C that
distinguishes G’s output from uniform
distribution on {0,1}m

CS151 Lecture 9 9

9

May 2, 2023

First attempt

• second problem

– we don’t know if “unpredictability” given a
prefix is sufficient to meet fooling requirement:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| ≤ ε

CS151 Lecture 9 10

10

May 2, 2023

Hard bits

• If {fn} is one-way permutation we know:
– no poly-size circuit can compute fn-1(y) from y with

non-negligible success probability
Pry[Cn(y) = fn-1(y)] ≤ ε’(n)

• We want to identify a single bit position j for
which:
– no poly-size circuit can compute (fn-1(x))j from x with

non-negligible advantage over a coin flip
Pry[Cn(y) = (fn-1(y))j] ≤ ½ + ε(n)

CS151 Lecture 9 11

11

May 2, 2023

Hard bits

• For some specific functions f we know of
such a bit position j

• More general:
function hn:{0,1}n → {0,1}

rather than just a bit position j.

CS151 Lecture 9 12

12

3

May 2, 2023

Hard bits
Definition: hard bit for g = {gn} is family h = {hn},

hn:{0,1}n → {0,1} such that if circuit family {Cn} of
size s(n) achieves:

Prx[Cn(x) = hn(gn(x))] ≥ ½ + ε(n)
then there is a circuit family {C’n} of size s’(n)
that achieves:

Prx[C’n(x) = gn(x)] ≥ ε’(n)
with:
– ε’(n) = (ε(n)/n)O(1)

– s’(n) = (s(n)n/ε(n))O(1)

CS151 Lecture 9 13

13

May 2, 2023

Goldreich-Levin

• To get a generic hard bit, first need to
modify our one-way permutation

• Define f’n :{0,1}n x {0,1}n → {0,1}2n as:

f’n(x,y) = (fn(x), y)

CS151 Lecture 9 14

14

May 2, 2023

Goldreich-Levin

• Two observations:
– f’ is a permutation if f is

– if circuit Cn achieves
Prx,y[Cn(x,y) = f’n-1(x,y)] ≥ ε(n)

then for some y*

Prx[Cn(x,y*)=f’n-1(x,y*)=(fn-1(x), y*)] ≥ ε(n)
and so f’ is a one-way permutation if f is.

f’n(x,y) = (fn(x), y)

CS151 Lecture 9 15

15

May 2, 2023

Goldreich-Levin

• The Goldreich-Levin function:
GL2n : {0,1}n x {0,1}n → {0,1}

is defined by:
GL2n (x,y) = ⨁i:yi =1xi

– parity of subset of bits of x selected by 1’s of y
– inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function f, GL is a
hard bit for f’. (proof: problem set)

CS151 Lecture 9 16

16

May 2, 2023

Distinguishers and predictors

• Distribution D on {0,1}n

• D ε-passes statistical tests of size s if for
all circuits of size s:

|Pry←Un[C(y) = 1] – Pry ←D[C(y) = 1]| ≤ ε

– circuit violating this is sometimes called an
efficient “distinguisher”

CS151 Lecture 9 17

17

May 2, 2023

Distinguishers and predictors

• D ε-passes prediction tests of size s if for
all circuits of size s:

Pry←D[C(y1,2,…,i-1) = yi] ≤ ½ + ε
– circuit violating this is sometimes called an

efficient “predictor”
• predictor seems stronger
• Yao showed essentially the same!

– important result and proof (“hybrid argument”)
CS151 Lecture 9 18

18

4

May 2, 2023

Distinguishers and predictors

Theorem (Yao): if a distribution D on {0,1}n

(ε/n)-passes all prediction tests of size s,
then it ε-passes all statistical tests of size
s’ = s – O(n).

CS151 Lecture 9 19

19

May 2, 2023

Distinguishers and predictors

• Proof:
– idea: proof by contradiction
– given a size s’ distinguisher C:

|Pry←Un[C(y) = 1] – Pry←D[C(y) = 1]| > ε

– produce size s predictor P:
Pry←D[P(y1,2,…,i-1) = yi] > ½ + ε/n

– work with distributions that are “hybrids” of the
uniform distribution Un and D

CS151 Lecture 9 20

20

May 2, 2023

Distinguishers and predictors

– given a size s’ distinguisher C:

|Pry←Un[C(y) = 1] – Pry←D[C(y) = 1]| > ε

– define n+1 hybrid distributions
– hybrid distribution Di:

• sample b = b1b2…bn from D
• sample r = r1r2…rn from Un

• output:
b1b2…bi ri+1ri+2…rn

CS151 Lecture 9 21

21

May 2, 2023

Distinguishers and predictors

• Hybrid distributions:

D0 = Un:

Dn = D:

Di-1:
Di:

...
...

...
...

CS151 Lecture 9 22

22

May 2, 2023

Distinguishers and predictors

– Define: pi = Pry←Di[C(y) = 1]

– Note: p0=Pry←Un[C(y)=1]; pn=Pry←D[C(y)=1]
– by assumption: ε < |pn – p0|
– triangle inequality: |pn – p0| ≤ Σ1 ≤ i ≤ n|pi – pi-1|
– there must be some i for which

|pi – pi-1| > ε/n
– WLOG assume pi – pi-1 > ε/n

• can invert output of C if necessary
CS151 Lecture 9 23

23

May 2, 2023

Distinguishers and predictors
– define distribution Di’ to be Di with i-th bit

flipped
– pi’ = Pry←Di’[C(y) = 1]

– notice:
Di-1 = (Di + Di’)/2 pi-1 = (pi + pi’)/2

Di-1:
Di:
Di’:

CS151 Lecture 9 24

24

5

May 2, 2023

Distinguishers and predictors

• randomized predictor P’ for ith bit:
– input: u = y1y2…yi-1 (which comes from D)
– flip a coin: d ∈{0,1}
– w = wi+1wi+2…wn←Un-i

– evaluate C(udw)
– if 1, output d; if 0, output ¬d

Claim:
Pry←D,d,w←Un-i[P’(y1…i-1) = yi] > ½ + ε/n.

CS151 Lecture 9 25

25

May 2, 2023

Distinguishers and predictors

• P’ is randomized procedure
• there must be some fixing of its random

bits d, w that preserves the success prob.
• final predictor P has d* and w* hardwired:

C

may need to
add ¬ gate

d*

w*

circuit
for P:

Size is

s’ + O(n) = s

as promised

CS151 Lecture 9 26

26

May 2, 2023

Distinguishers and predictors

• Proof of claim:
Pry←D,d,w←Un-i[P’(y1…i-1) = yi] =

Pr[yi = d | C(u,d,w) = 1]Pr[C(u,d,w) = 1]
+ Pr[yi = ¬d | C(u,d,w) = 0]Pr[C(u,d,w) = 0]

= Pr[yi = d | C(u,d,w) = 1](pi-1)
+ Pr[yi = ¬d | C(u,d,w) = 0](1 - pi-1)

u = y1y2…yi-1

CS151 Lecture 9 27

27

May 2, 2023

Distinguishers and predictors

– Observe:
Pr[yi = d | C(u,d,w) = 1]
= Pr[C(u,d,w) = 1 | yi = d]Pr[yi=d] / Pr[C(u,d,w) = 1]
= pi/(2pi-1)

Pr[yi = ¬d | C(u,d,w) = 0]
= Pr[C(u,d,w)=0 | yi= ¬d]Pr[yi=¬d] / Pr[C(u,d,w) = 0]
= (1 – pi’) / 2(1 - pi-1)

Di-1

Di

Di’

u = y1y2…yi-1

CS151 Lecture 9 28

28

May 2, 2023

Distinguishers and predictors
• Success probability:

Pr[yi=d|C(u,d,w)=1](pi-1) + Pr[yi=¬d|C(u,d,w)=0](1-pi-1)
• We know:

– Pr[yi = d | C(u,d,w) = 1] = pi/(2pi-1)
– Pr[yi = ¬d | C(u,d,w) = 0] = (1 - pi’)/2(1 - pi-1)
– pi-1 = (pi + pi’)/2
– pi – pi-1 > ε/n

• Conclude:
Pr[P’(y1…i-1) = yi] = ½ + (pi - pi’)/2

= ½ + pi/2 – (pi-1 – pi/2) = ½ + pi – pi-1 > ½ + ε/n.

pi’/2 = pi-1 – pi/2

CS151 Lecture 9 29

29

May 2, 2023

The BMY Generator

• Recall goal: for all 1 > δ > 0, family of
PRGs {Gm} with
output length m fooling size s = m
seed length t = mδ running time mc

error ε < 1/6

• If one way permutations exist then WLOG
there is OWP f = {fn} with hard bit h = {hn}

CS151 Lecture 9 30

30

6

May 2, 2023

The BMY Generator

• Generator Gδ = {Gδ
m}:

– t = mδ

– y0 ∈ {0,1}t

– yi = ft(yi-1)
– bi = ht(yi)
– Gδ(y0) = bm-1bm-2bm-3…b0

CS151 Lecture 9 31

31

May 2, 2023

The BMY Generator

Theorem (BMY): for every δ > 0, there is a
constant c s.t. for all d, e, Gδ is a PRG with

error ε < 1/md

fooling size s = me

running time mc

• Note: stronger than we needed
– sufficient to have ε < 1/6; s = m

CS151 Lecture 9 32

32

May 2, 2023

The BMY Generator

• Proof:
– computable in time at most

mtc < mc+1

– assume Gδ does not (1/md)-pass statistical
test C = {Cm} of size me:

|Pry←Um[C(y) = 1] – Prz←D[C(z) = 1]| >1/md

Generator Gδ = {Gδm}:
–t = mδ; y0 ∈ {0,1}t; yi = ft(yi-1); bi = ht(yi)
–Gδm(y0) = bm-1bm-2bm-3…b0

CS151 Lecture 9 33

33

May 2, 2023

The BMY Generator

– transform this distinguisher into a predictor
P of size me + O(m):

Pry[P(bm-1…bm-i) = bm-i-1] > ½ + 1/md+1

Generator Gδ = {Gδm}:
–t = mδ; y0 ∈ {0,1}t; yi = ft(yi-1); bi = ht(yi)
–Gδm(y0) = bm-1bm-2bm-3…b0

CS151 Lecture 9 34

34

May 2, 2023

The BMY Generator

– a procedure to compute ht(ft-1(y))
• set ym-i = y; bm-i = ht(ym-i)
• compute yj, bj for j = m-i+1, m-i+2…, m-1 as above
• evaluate P(bm-1bm-2…bm-i)
• f a permutation implies bm-1bm-2…bm-i distributed as

(prefix of) output of generator:
Pry[P(bm-1bm-2…bm-i) = bm-i-1] > ½ + 1/md+1

Generator Gδ = {Gδm}:
–t = mδ; y0 ∈ {0,1}t; yi = ft(yi-1); bi = ht(yi)
–Gδm(y0) = bm-1bm-2bm-3…b0

CS151 Lecture 9 35

35

May 2, 2023

The BMY Generator

Pry[P(bm-1bm-2…bm-i) = bm-i-1] > ½ + 1/md+1

– What is bm-i-1?
bm-i-1 = ht(ym-i-1) = ht(ft-1(ym-i)) = ht(ft-1(y))

– We have described a family of polynomial-size
circuits that computes ht(ft-1(y)) from y with success
greater than ½ + 1/poly(m)

– Contradiction.

Generator Gδ = {Gδm}:
–t = mδ; y0 ∈ {0,1}t; yi = ft(yi-1); bi = ht(yi)
–Gδm(y0) = bm-1bm-2bm-3…b0

CS151 Lecture 9 36

36

7

May 2, 2023

The BMY Generator

y0y1y2y3y4y5

ftftftftft

G(y0):

y0y1y2y3y4y5

ft
-1ftft

G’(y3):

ft
-1ft

-1

b0b1b2b3b4b5

b0b1b2b3b4b5

same
distribution

CS151 Lecture 9 37

37

May 2, 2023

Hardness vs. randomness

• We have shown:
If one-way permutations exist then

BPP ⊆ ⋂δ>0 TIME(2nδ) ⊆ EXP
• simulation is better than brute force, but

just barely
• stronger assumptions on difficulty of

inverting OWF lead to better simulations…

38CS151 Lecture 9

38

May 2, 2023

Hardness vs. randomness

• Next, we will show:

If E requires exponential size circuits then
BPP = P

by building a different generator from
different assumptions.

E = ∪k DTIME(2kn)

39CS151 Lecture 9

39

May 2, 2023

Hardness vs. randomness

• BMY: for every δ > 0, Gδ is a PRG with
seed length t = mδ

output length m
error ε < 1/md (all d)

fooling size s = me (all e)
running time mc

• running time of simulation dominated by 2t

40CS151 Lecture 9

40

May 2, 2023

Hardness vs. randomness

• To get BPP = P, would need t = O(log m)
• BMY building block is one-way-

permutation:
f:{0,1}t → {0,1}t

• required to fool circuits of size me (all e)
• with these settings a circuit has time to

invert f by brute force!
can’t get BPP = P with this type of PRG

41CS151 Lecture 9

41

May 2, 2023

Hardness vs. randomness

• BMY pseudo-random generator:
– one generator fooling all poly-size bounds
– one-way-permutation is hard function
– implies hard function in NP ∩ coNP

• New idea (Nisan-Wigderson):
– for each poly-size bound, one generator
– hard function allowed to be in

E = ∪k DTIME(2kn)

42CS151 Lecture 9

42

