

Blum-Micali-Yao PRG
 believe one-way functions exist
 – e.g. integer multiplication, discrete log, RSA
(w/ minor modifications)

 $\begin{array}{l} \underline{\textbf{Definition}}: \text{ One Way Permutation: OWF in} \\ \text{which } f_n \text{ is } 1\text{-}1 \\ - \text{ can simplify "} Pr_x[C_n(f_n(x)) \in f_n\text{-}1(f_n(x))] \leq \epsilon(n) \text{"to} \\ Pr_y[C_n(y) = f_n\text{-}1(y)] \leq \epsilon(n) \end{array}$

CS151 Lecture 9

May 2, 2023

First attempt • attempt at PRG from OWP f: $-t = m^{\delta}$ $-y_0 \in \{0,1\}^t$ $-y_i = f_t(y_{i-1})$ $-G(y_0) = y_{k-1}y_{k-2}y_{k-3}...y_0$ -k = m/t

• computable in time at most

ktc < mtc-1 = mc

May 2, 2023

5

6

5

Goldreich-Levin				
• Two obse – f' is a per	rvations: mutation if f is	$\mathbf{f'}_{n}(\mathbf{x},\mathbf{y})=(\mathbf{f}_{n}(\mathbf{x}),\mathbf{y})$		
- if circuit C_n achieves $Pr_{x,y}[C_n(x,y) = f'_{n}^{-1}(x,y)] \ge \epsilon(n)$ then for some y' $Pr_x[C_n(x,y^*)=f'_{n}^{-1}(x,y^*)=(f_{n}^{-1}(x),y^*)] \ge \epsilon(n)$ order for a construction if f in				
May 2, 2023	CS151 Lectur	15 re 9		
15				

	Distinguishers and predictors
•	Distribution D on {0,1} ⁿ
•	D ε-passes statistical tests of size s if for all circuits of size s:
	$ Pr_{y \leftarrow U_{n}}[C(y) = 1] - Pr_{y \leftarrow D}[C(y) = 1] \leq \epsilon$

- circuit violating this is sometimes called an efficient "distinguisher"

CS151 Lecture 9

May 2, 2023

 D ε-passes prediction tests of size s if for all circuits of size s:

$\mathsf{Pr}_{y \leftarrow \mathsf{D}}[C(y_{1,2,\ldots,i\text{-}1}) = y_i] \le \frac{1}{2} + \epsilon$

- circuit violating this is sometimes called an efficient "predictor"
- predictor seems stronger
- Yao showed essentially the same!
 important result and proof ("hybrid argument")
 May 2, 2023
 CS151 Lecture 9
 18

16

17

18

Distingu	ishers and predictor	rs
• Success prob $Pr[y_i=d]C(u,d,w)$ • We know: $-Pr[y_i = d] C(u, -Pr[y_i = nd] C(u, -Pr[y_i = nd] C(u, -Pr[y_i = nd] C(u, -Pr(y_i = nd) C(u, -P$	$\begin{aligned} \text{pability:} \\ \mu(y) = 1](p_{\mu,1}) + \Pr[y_{1} = \neg d]C(u,d,w) = 0](1-u,d,w) = 1] = p/(2p_{\mu,1}) \\ \Sigma(u,d,w) = 0] = (1-p_{1})/2(1-p_{\mu,1}) \\ \mu(y) = (1-p_{1})/2(1$	p⊾1) n.
May 2, 2023	CS151 Lecture 9	29

DEFINITION The DEMENDENCE DEME

Hardness vs. randomness • To get BPP = P, would need $t = O(\log m)$ BMY building block is one-waypermutation: $f:\{0,1\}^t \to \{0,1\}^t$ required to fool circuits of size m^e (all e) • with these settings a circuit has time to invert f by brute force! can't get BPP = P with this type of PRG May 2, 2023 CS151 Lecture 9 41

41