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2. Polynomial identity testing

• Given: polynomial p(x1, x2, …, xn) as 
arithmetic formula (fan-out 1):

-

*

x1 x2

*

+ -

x3 … xn

*
• multiplication (fan-in 2)

• addition (fan-in 2)

• negation (fan-in 1)
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Polynomial identity testing

• Question: Is p identically zero?
– i.e., is p(x) = 0 for all x ∈ Fn

– (assume |F| larger than degree…)

• “polynomial identity testing” because 
given two polynomials p, q, we can check 
the identity p ≡ q by checking if (p – q) ≡ 0
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Polynomial identity testing

• try all |F|n inputs? 
– may be exponentially many

• multiply out symbolically, check that all 
coefficients are zero?
– may be exponentially many coefficients

• can randomness help?
– i.e., flip coins, allow small probability of wrong 

answer
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let 
p(x1, x2, …, xn) 

be a total degree d polynomial over a field 
F and let S be any subset of F. Then if p is 
not identically 0, 

Prr1,r2,…,rn∈S[ p(r1, r2, …, rn) = 0] ≤ d/|S|.
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Polynomial identity testing

• Proof:
– induction on number of variables n
– base case: n = 1, p is univariate polynomial of 

degree at most d
– at most d roots, so 

Pr[ p(r1) = 0] ≤ d/|S|
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Polynomial identity testing

– write p(x1, x2, …, xn) as
p(x1, x2, …, xn) = Σi (x1)i pi(x2, …, xn)

– k = max. i for which pi(x2, …, xn) not id. zero
– by induction hypothesis:

Pr[ pk(r2, …, rn) = 0] ≤ (d-k)/|S|
– whenever pk(r2, …, rn) ≠ 0, p(x1, r2, …, rn) is a 

univariate polynomial of degree k
Pr[p(r1,r2,…,rn)=0 | pk(r2,…,rn) ≠ 0]  ≤ k/|S|
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Polynomial identity testing

Pr[ pk(r2, …, rn) = 0] ≤ (d-k)/|S|
Pr[p(r1,r2,…,rn)=0 | pk(r2,…,rn) ≠ 0]  ≤ k/|S|

– conclude: 
Pr[ p(r1, …, rn) = 0] ≤ (d-k)/|S| + k/|S| = d/|S|

– Note: can add these probabilities because
Pr[E1] = Pr[E1|E2]Pr[E2] + Pr[E1|¬E2]Pr[¬E2] 

≤ Pr[E2] + Pr[E1|¬E2]
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Polynomial identity testing

• Given: polynomial p(x1, x2, …, xn)

• Is p identically zero?

• Note: degree d is at most the size of input

-

*

x1 x2

*

+ -

x3 … xn

*
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Polynomial identity testing

• randomized algorithm: field F, pick a 
subset S ∈ F of size 2d
– pick r1, r2, …, rn from S uniformly at random
– if p(r1, r2, …, rn) = 0, answer “yes”
– if p(r1, r2, …, rn) ≠ 0, answer “no”

• if p identically zero, never wrong
• if not, Schwartz-Zippel ensures probability 

of error at most ½
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Polynomial identity testing

• Given: polynomial p(x1, x2, …, xn)

• Is p identically zero?

-

*

x1 x2

*

+ -

x3 … xn

*

What if polynomial is given 
as arithmetic circuit?

• max degree?

• does the same strategy 
work? 
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3. Unique solutions

• a positive instance of SAT may have many 
satisfying assignments

• maybe the difficulty comes from not 
knowing which to “work on”

• if we knew # satisfying assignments was 1 
or 0, could we zoom in on the 1 efficiently?
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Unique solutions

Question: given polynomial-time algorithm
that works on SAT instances with at most 
1 satisfying assignment, can we solve 
general SAT instances efficiently?

• Answer: yes
– but (currently) only if “efficiently” allows 

randomness
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Unique solutions

Theorem (Valiant-Vazirani): there is a 
randomized poly-time procedure that given 
a 3-CNF formula 

φ(x1, x2, …, xn)
outputs a 3-CNF formula φʼ such that 
– if φ is not satisfiable then φʼ is not satisfiable
– if φ is satisfiable then with probability at least 

1/(8n) φʼ has exactly one satisfying 
assignment
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Unique solutions

• Proof:
– given subset S ∈ {1, 2, …, n}, there exists a   

3-CNF formula θS on x1, x2, …, xn and 
additional variables such that:
• θS is satisfiable iff an even number of 

variables in {xi}i∈S are true
• for each such setting of the xi variables, this 

satisfying assignment is unique
• |θS| = O(n)
• not difficult; details omitted
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Unique solutions
– set φ0 = φ
– for i = 1, 2, …, n

• pick random subset Si

• set φi = φi-1 ∧ θSi

– output random one of the φi

– T = set of satisfying assignments for φ
– Claim: if |T| > 0, then

Prk∈{0,1,2,…,n-1}[2k ≤ |T| ≤ 2k+1] ≥ 1/n
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Unique solutions

Claim: if 2k ≤ |T| ≤ 2k+1, then the probability φk+2
has exactly one satisfying assignment is ≥ 1/8

– fix t, tʼ ∈ T

– Pr[t “agrees with” tʼ on Si] = ½
– Pr[t agrees with tʼ on S1, S2, …, Sk+2] = (½)k+2

t = 0101 00101 0111
tʼ = 1010 111000101

Si

Si contains even # 
of positions i 
where ti ≠ tiʼ
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Unique solutions
– Pr[t agrees with some tʼ on S1,…, Sk+2] 

≤ (|T|-1)(½)k+2 < ½
– Pr[t satisfies S1, S2, …, Sk+2] = (½)k+2

– Pr[t unique satisfying assignment of φk+2] 
> (½)k+3

– sum over at least 2k different t ∈ T (disjoint 
events); claim follows.
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Randomized complexity classes

• model: probabilistic Turing Machine
– deterministic TM with additional read-only 

tape containing “coin flips”
• BPP (Bounded-error Probabilistic Poly-time)

– L ∈ BPP if there is a p.p.t. TM M: 
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3

– “p.p.t” = probabilistic polynomial time
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Randomized complexity classes

• RP (Random Polynomial-time)
– L ∈ RP if there is a p.p.t. TM M:

x ∈ L ⇒ Pry[M(x,y) accepts] ≥ ½ 
x ∉ L ⇒ Pry[M(x,y) rejects] = 1

• coRP (complement of Random Polynomial-time)
– L ∈ coRP if there is a p.p.t. TM M:

x ∈ L ⇒ Pry[M(x,y) accepts] = 1
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ ½ 
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Randomized complexity classes

One more important class:

• ZPP (Zero-error Probabilistic Poly-time)

– ZPP = RP ∩ coRP
– Pry[M(x,y) outputs “fail”] ≤ ½
– otherwise outputs correct answer

CS151 Lecture 8

21

April 27, 2023

Randomized complexity classes

• “1/2” in ZPP, RP, coRP definition unimportant
– can replace by 1/poly(n)

• “2/3” in BPP definition unimportant
– can replace by ½ + 1/poly(n)

• Why? error reduction
– we will see simple error reduction by repetition
– more sophisticated error reduction later

These classes may capture “efficiently 
computable” better than P.
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Error reduction for RP

• given L and p.p.t TM M:
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ ε
x ∉ L ⇒ Pry[M(x,y) rejects] = 1

• new p.p.t TM Mʼ:
– simulate M k/ε times, each time with 

independent coin flips
– accept if any simulation accepts
– otherwise reject
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Error reduction

x ∈ L ⇒ Pry[M(x,y) accepts] ≥ ε
x ∉ L ⇒ Pry[M(x,y) rejects] = 1

• if x ∈ L:
– probability a given simulation “bad” ≤ (1 – ε)
– probability all simulations “bad” ≤ (1–ε)(k/ε) ≤ e-k

Pryʼ[Mʼ(x, yʼ) accepts] ≥ 1 – e-k

• if x ∉ L:
Pryʼ[Mʼ(x,yʼ) rejects] = 1
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Error reduction for BPP

• given L, and p.p.t. TM M:
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ ½ + ε
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ ½ + ε

• new p.p.t. TM Mʼ:
– simulate M k/ε2 times, each time with 

independent coin flips
– accept if majority of simulations accept
– otherwise reject
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Error reduction for BPP
– Xi random variable indicating “correct”

outcome in i-th simulation (out of m = k/ε2 )
• Pr[Xi = 1] ≥ ½ + ε
• Pr[Xi = 0] ≤ ½ - ε

– E[Xi] ≥ ½+ε
– X = ΣiXi

– μ = E[X] ≥ (½ + ε)m 

– Chernoff: Pr[X ≤ m/2] ≤ 2-Ω(ε2 μ) 
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Error reduction for BPP

x ∈ L ⇒ Pry[M(x,y) accepts] ≥ ½ + ε
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ ½ + ε

– if x ∈ L

Pryʼ[Mʼ(x, yʼ) accepts] ≥ 1 – (½)Ω(k)

– if x ∉ L 

Pryʼ[Mʼ(x,yʼ) rejects] ≥ 1 – (½)Ω(k)
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Randomized complexity classes

• We have shown:
– polynomial identity testing is in coRP

– a poly-time algorithm for detecting unique 
solutions to SAT implies

NP = RP
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Relationship to other classes

• ZPP, RP, coRP, BPP, contain P
– they can simply ignore the tape with coin flips

• all are in PSPACE 
– can exhaustively try all strings y
– count accepts/rejects; compute probability

• RP ⊆ NP (and coRP ⊆ coNP)
– multitude of accepting computations
– NP requires only one
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Relationship to other classes

P

RP coRP

NP coNP

PSPACE

BPP
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BPP

• How powerful is BPP?
• We have seen an example of a problem in 

BPP
that we only know how to solve in EXP.

Is randomness a panacea
for intractability?
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BPP

• It is not known if BPP = EXP (or even 
NEXP!) 
– but there are strong hints that it does not

• Is there a deterministic simulation of BPP 
that does better than brute-force search?
– yes, if allow non-uniformity

Theorem (Adleman):  BPP ⊆ P/poly
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BPP and Boolean circuits

• Proof: 
– language L ∈ BPP 
– error reduction gives TM M such that

• if x ∈ L of length n
Pry[M(x, y) accepts] ≥ 1 – (½)n2

• if x ∉ L of length n
Pry[M(x, y) rejects] ≥ 1 – (½)n2
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BPP and Boolean circuits
– say “y is bad for x” if M(x,y) gives incorrect 

answer

– for fixed x: Pry[y is bad for x] ≤ (½)n2

– Pry[y is bad for some x] ≤ 2n(½)n2< 1

– Conclude: there exists some y on which     
M(x, y) is always correct

– build circuit for M, hardwire this y
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BPP and Boolean circuits

• Does BPP = EXP ?
• Adlemanʼs Theorem shows:

BPP = EXP implies EXP ⊆ P/poly

If you believe that randomness is 
all-powerful, you must also believe 

that non-uniformity gives an 
exponential advantage.

CS151 Lecture 8

35

April 27, 2023

BPP

• Next:
further explore the relationship between 

randomness
and 

nonuniformity

• Main tool: pseudo-random generators
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Derandomization

• Goal: try to simulate BPP in 
subexponential time (or better)

• use Pseudo-Random Generator (PRG):

• often: PRG “good” if it passes (ad-hoc) 
statistical tests

seed output stringG
t bits m bits
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Derandomization

• ad-hoc tests not good enough to prove 
BPP has non-trivial simulations

• Our requirements:
– G is efficiently computable
– “stretches” t bits into m bits
– “fools” small circuits: for all circuits C of size 

at most s:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| ≤ ε
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Simulating BPP using PRGs

• Recall: L ∈ BPP implies exists p.p.t.TM M
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3

• given an input x:
– convert M into circuit C(x, y)
– simplification: pad y so that |C| = |y| = m

• hardwire input x to get circuit Cx
Pry[Cx(y) = 1] ≥ 2/3     (“yes”)
Pry[Cx(y) = 1] ≤ 1/3     (“no”)
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Simulating BPP using PRGs

• Use a PRG G with
– output length m
– seed length t « m
– error ε < 1/6
– fooling size s = m

• Compute Prz[Cx(G(z)) = 1] exactly
– evaluate Cx(G(z)) on every seed z ∈ {0,1}t

• running time (O(m)+(time for G))2t
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Simulating BPP using PRGs

• knowing Prz[Cx(G(z)) = 1], can distinguish 
between two cases:

0 1/3 1/2 2/3 1
“yes”:

ε

0 1/3 1/2 2/3 1
“no”:

ε
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Blum-Micali-Yao PRG

• Initial goal: for all 1 > δ > 0, we will build a 
family of PRGs {Gm} with:
output length m fooling size s = m
seed length t = mδ running time mc

error ε < 1/6

• implies: BPP ⊆ ∩δ>0 TIME(2nδ ) ⊆ EXP
• Why? simulation runs in time

O(m+mc)(2mδ) = O(2m2δ) = O(2n2kδ) 
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