

1

Polynomial identity testing

Lemma (Schwartz-Zippel): Let
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
be a total degree d polynomial over a field F and let S be any subset of F. Then if p is not identically 0 ,
$\operatorname{Pr}_{r_{1}, r_{2} \ldots, r_{n} \in S}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \leq d /|S|$.

- can randomness help?
-i.e., flip coins, allow small probability of wrong answer

Appil 27,2023
CS151 Lecture 8
4

Polynomial identity testing

- try all $|\mathbf{F}|^{n}$ inputs?
- may be exponentially many
- multiply out symbolically, check that all coefficients are zero?
- may be exponentially many coefficients

Polynomial identity testing

- Question: Is p identically zero?
-i.e., is $p(\mathbf{x})=0$ for all $\mathbf{x} \in F^{n}$
- (assume |F| larger than degree...)
- "polynomial identity testing" because given two polynomials p, q, we can check the identity $\mathrm{p} \equiv \mathrm{q}$ by checking if $(\mathrm{p}-\mathrm{q}) \equiv 0$

April 27, 2023
CS151 Lecture 8
3

Polynomial identity testing

- Proof:
- induction on number of variables n
- base case: $n=1, p$ is univariate polynomial of degree at most d
- at most d roots, so

$$
\operatorname{Pr}\left[p\left(r_{1}\right)=0\right] \leq d /|S|
$$

April 27, 2023
CS151 Lecture 8
6

Polynomial identity testing

- write $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ as
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Sigma_{i}\left(x_{1}\right){ }^{i} p_{i}\left(x_{2}, \ldots, x_{n}\right)$
$-k=$ max. i for which $p_{i}\left(x_{2}, \ldots, x_{n}\right)$ not id. zero
- by induction hypothesis:
$\operatorname{Pr}\left[p_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|$
- whenever $p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0, p\left(x_{1}, r_{2}, \ldots, r_{n}\right)$ is a univariate polynomial of degree k
$\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k /|S|$
Appil 27,2023
CS151 Lecture 8

7

Polynomial identity testing

$$
\operatorname{Pr}\left[p_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|
$$

$\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k|S|$

- conclude:
$\operatorname{Pr}\left[p\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|+k / S S|=d /|S|$
- Note: can add these probabilities because $\operatorname{Pr}\left[\mathrm{E}_{1}\right]=\operatorname{Pr}\left[\mathrm{E}_{1} \mid \mathrm{E}_{2}\right] \operatorname{Pr}\left[\mathrm{E}_{2}\right]+\operatorname{Pr}\left[\mathrm{E}_{1} \mid \neg \mathrm{E}_{2}\right] \operatorname{Pr}\left[\neg \mathrm{E}_{2}\right]$ $\leq \operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[\mathrm{E}_{1} \mid \neg \mathrm{E}_{2}\right]$

April 17,2023
CS151 Lecture 8
8

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Is p identically zero? What if polynomial is given as arithmetic circuit?
- max degree?
- does the same strategy work?

April 27,2023
CS151 Lecture 8

11

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Is p identically zero?

- Note: degree d is at most the size of input

April 27, 2023
CS151 Lecture 8
9

Polynomial identity testing

- randomized algorithm: field \mathbf{F}, pick a subset $S \in F$ of size $2 d$
- pick $r_{1}, r_{2}, \ldots, r_{n}$ from S uniformly at random
-if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$, answer "yes"
-if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right) \neq 0$, answer "no"
- if p identically zero, never wrong
- if not, Schwartz-Zippel ensures probability of error at most $1 / 2$

Appil2, 2023 CS15 L Ledure 8

10

3. Unique solutions

- a positive instance of SAT may have many satisfying assignments
- maybe the difficulty comes from not knowing which to "work on"
- if we knew \# satisfying assignments was 1 or 0 , could we zoom in on the 1 efficiently?

Apili 27, 2023
CS151 Lecture 8
12

Unique solutions

Question: given polynomial-time algorithm that works on SAT instances with at most 1 satisfying assignment, can we solve general SAT instances efficiently?

- Answer: yes
- but (currently) only if "efficiently" allows randomness

$$
\begin{array}{ll}
\text { April } 27,2023 & \text { CS151 Lecture } 8
\end{array}
$$

13

Unique solutions

Theorem (Valiant-Vazirani): there is a randomized poly-time procedure that given a 3-CNF formula

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

outputs a 3-CNF formula φ ' such that

- if φ is not satisfiable then φ^{\prime} is not satisfiable
- if φ is satisfiable then with probability at least $1 /(8 n) \varphi$ ' has exactly one satisfying assignment

Apri 27, 2023
CS151 Lecture 8
14

Unique solutions

Claim: if $2^{k} \leq|T| \leq 2^{k+1}$, then the probability φ_{k+2}
has exactly one satisfying assignment is $\geq 1 / 8$

- for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- pick random subset S
- set $\varphi_{i}=\varphi_{i-1} \wedge \theta_{S_{i}}$
- output random one of the φ_{i}
$-T=$ set of satisfying assignments for φ
- Claim: if $|\mathrm{T}|>0$, then

$$
\operatorname{Pr}_{k} \in\{0,1,2, \ldots, n-1\}\left[2^{k} \leq|T| \leq 2^{k+1}\right] \geq 1 / n
$$

Appil 27,2023
CS151 Lecture 8
16

Unique solutions

$-\operatorname{set} \varphi_{0}=\varphi$

- fix $t, t^{\prime} \in T$

| - fix $t, t^{\prime} \in T$ |
| :--- | :--- |$\quad t=0101001010111$

$-\operatorname{Pr}\left[t\right.$ "agrees with" t' on $\left.S_{i}\right]=1 / 2$
$-\operatorname{Pr}\left[t\right.$ agrees with t^{\prime} on $\left.\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}+2}\right]=(1 / 2)^{\mathrm{k}+2}$

Appil 27,2023

CS151 Lecture 8
17

Unique solutions

- Proof:
- given subset $S \in\{1,2, \ldots, n\}$, there exists a $3-C N F$ formula θ_{s} on $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ and additional variables such that:
- θ_{s} is satisfiable iff an even number of variables in $\left\{x_{i}\right\}_{i \in S}$ are true
- for each such setting of the x_{i} variables, this satisfying assignment is unique
- $\left|\theta_{\mathrm{s}}\right|=O(n)$
- not difficult; details omitted

April 27, 2023
CS151 Lecture 8
15

Unique solutions

- $\operatorname{Pr}\left[t\right.$ agrees with some t' on $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}+2}$]

$$
\leq(|\mathrm{T}|-1)(1 / 2)^{\mathrm{k}+2}<1 / 2
$$

$-\operatorname{Pr}\left[t\right.$ satisfies $\left.S_{1}, S_{2}, \ldots, S_{k+2}\right]=(1 / 2)^{k+2}$
$-\operatorname{Pr}\left[t\right.$ unique satisfying assignment of $\left.\varphi_{\mathrm{k}+2}\right]$

$$
>(1 / 2)^{k+3}
$$

- sum over at least 2^{k} different $t \in T$ (disjoint events); claim follows.

Appil 27, 2023
CS151 Lecture 8
18

Randomized complexity classes

- model: probabilistic Turing Machine - deterministic TM with additional read-only tape containing "coin flips"
- BPP (Bounded-error Probabilistic Poly-time)
$-L \in \operatorname{BPP}$ if there is a p.p.t. TM M :

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 2 / 3
$$

$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$

- "p.p.t" = probabilistic polynomial time

Appil2, 2023
CS151 Lecture 8
19

Randomized complexity classes

- RP (Random Polynomial-time)
$-L \in R P$ if there is a p.p.t. TM M:
$x \in L \Rightarrow \operatorname{Pry}[M(x, y)$ accepts $] \geq 1 / 2$
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $]=1$
- coRP (complement of Random Polynomial-time)
$-L \in \operatorname{coRP}$ if there is a p.p.t. TM M:

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }]=1
$$ $x \notin L \Rightarrow \operatorname{Pry}_{y}[M(x, y)$ rejects $] \geq 1 / 2$

April 27,2023
CS151 Lecture 8
20

Randomized complexity classes

One more important class:

- ZPP (Zero-error Probabilistic Poly-time)

$$
-\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{CoRP}
$$

- $\operatorname{Pr}_{y}[\mathrm{M}(\mathrm{x}, \mathrm{y})$ outputs "fail"] $\leq 1 / 2$
- otherwise outputs correct answer

April 27,2023

CS151 Lecture 8
21

Randomized complexity classes

These classes may capture "efficiently computable" better than \mathbf{P}.

- "1/2" in ZPP, RP, coRP definition unimportant - can replace by $1 /$ poly(n)
- " $2 / 3$ " in BPP definition unimportant
- can replace by $1 / 2+1 /$ poly(n)
- Why? error reduction
- we will see simple error reduction by repetition
- more sophisticated error reduction later

April 27, 2023
CS151 Lecture 8
22

Error reduction for RP

- given L and p.p.t TM M:
$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq \varepsilon$
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $]=1$
- new p.p.t TM M':
- simulate $M k / \varepsilon$ times, each time with independent coin flips
- accept if any simulation accepts
- otherwise reject

April 27, 2023
CS151 Lecture 8
23

Error reduction

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq \varepsilon
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
$$

- if $x \in L$:
- probability a given simulation "bad" $\leq(1-\varepsilon)$
- probability all simulations "bad" $\leq(1-\varepsilon)^{(k / \varepsilon)} \leq e^{-k}$

$$
\operatorname{Pr}_{\mathrm{y}} \cdot\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}{ }^{\prime}\right) \text { accepts }\right] \geq 1-\mathrm{e}^{-\mathrm{k}}
$$

- if $x \notin L$:

$$
\operatorname{Pr}_{\mathrm{y}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \text { rejects }\right]=1
$$

Apil 27, 2023
CS151 Lecture 8
24

Error reduction for BPP

- given L, and p.p.t. TM M:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2+\varepsilon \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 1 / 2+\varepsilon
\end{aligned}
$$

- new p.p.t. TM M':
- simulate $M \mathrm{k} / \varepsilon^{2}$ times, each time with independent coin flips
- accept if majority of simulations accept
- otherwise reject

Appl127, 2023
CS151 Lecture 8
25

Error reduction for BPP

$-X_{i}$ random variable indicating "correct" outcome in i-th simulation (out of $\mathrm{m}=\mathrm{k} / \varepsilon^{2}$)

- $\operatorname{Pr}\left[\mathrm{X}_{\mathrm{i}}=1\right] \geq 1 / 2+\varepsilon$
- $\operatorname{Pr}\left[X_{i}=0\right] \leq 1 / 2-\varepsilon$
$-E\left[X_{1}\right] \geq 1 / 2+\varepsilon$
$-X=\Sigma_{i} X_{i}$
$-\mu=\mathrm{E}[\mathrm{X}] \geq(1 / 2+\varepsilon) \mathrm{m}$
- Chernoff: $\operatorname{Pr}[X \leq m / 2] \leq 2^{-\Omega(\varepsilon 2 \mu)}$

Appil27, 2023
CS151 Lecture 8
26

Error reduction for BPP

$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 1 / 2+\varepsilon$
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 1 / 2+\varepsilon$
-if $x \in L$
$\operatorname{Pry}_{\mathrm{y}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)\right.$ accepts $] \geq 1-\left(\frac{1}{2}\right)^{\Omega(k)}$
-if $\mathrm{x} \notin \mathrm{L}$
$\operatorname{Pr}_{y}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)\right.$ rejects $] \geq 1-(1 / 2)^{n(k)}$
Appil 27,2023
CS151 Lecture 8

27

Randomized complexity classes

- We have shown:
- polynomial identity testing is in coRP
- a poly-time algorithm for detecting unique solutions to SAT implies
$N P=R P$

Appil 27,2023
CS151 Lecture 8
28

Relationship to other classes

- ZPP, RP, coRP, BPP, contain P
- they can simply ignore the tape with coin flips
- all are in PSPACE
- can exhaustively try all strings y
- count accepts/rejects; compute probability
- $\mathbf{R P} \subseteq \mathbf{N P}$ (and coRP $\subseteq c o N P$)
- multitude of accepting computations
- NP requires only one

April 27,2023
CS151 Lecture 8
29

Relationship to other classes

30

31

BPP

- It is not known if BPP = EXP (or even NEXP!)
- but there are strong hints that it does not
- Is there a deterministic simulation of BPP that does better than brute-force search? - yes, if allow non-uniformity

Theorem (Adleman): BPP \subseteq P/poly
Appil 27,2023
CS151 Lecture 8
32

BPP and Boolean circuits

- Proof:
- language $L \in$ BPP
- error reduction gives TM M such that
- if $x \in L$ of length n
$\operatorname{Pry}_{y}[M(x, y)$ accepts $] \geq 1-(1 / 2)^{n^{2}}$
- if $x \notin L$ of length n
$\operatorname{Pr}_{\mathrm{y}}[\mathrm{M}(\mathrm{x}, \mathrm{y})$ rejects $] \geq 1-(1 / 2)^{n^{2}}$

April $27,2023 \quad$ CS151 Lecture 8
33

BPP and Boolean circuits

- say " y is bad for x " if $M(x, y)$ gives incorrect answer
- for fixed x : Pry $_{\mathrm{y}}[\mathrm{y}$ is bad for x$] \leq(1 / 2)^{n^{2}}$
- $\operatorname{Pr}_{y}[y$ is bad for some $x] \leq 2^{n}(1 / 2)^{n^{2}}<1$
- Conclude: there exists some y on which $M(x, y)$ is always correct
- build circuit for M, hardwire this y

Appil 17,2023
CS151 Lecture 8
34

BPP and Boolean circuits

- Does BPP = EXP ?
- Adleman's Theorem shows:

BPP = EXP implies EXP \subseteq P/poly

If you believe that randomness is all-powerful, you must also believe that non-uniformity gives an exponential advantage.

April 17,2023
CS151 Lecture 8
35

BPP

- Next:
further explore the relationship between randomness
nonuniformity
- Main tool: pseudo-random generators

Appil 27,2023
CS151 Lecture 8
36

Derandomization

- Goal: try to simulate BPP in subexponential time (or better)
- use Pseudo-Random Generator (PRG):

- often: PRG "good" if it passes (ad-hoc) statistical tests

Apili 27, 2023

$$
\text { CS151 Lecture } 8
$$

37

Derandomization

- ad-hoc tests not good enough to prove BPP has non-trivial simulations
- Our requirements:
- G is efficiently computable
- "stretches" \mathbf{t} bits into \mathbf{m} bits
- "fools" small circuits: for all circuits C of size at most \mathbf{s} :
$\left|\operatorname{Pr}_{y}[C(y)=1]-\operatorname{Pr}_{z}[C(G(z))=1]\right| \leq \varepsilon$
Apili 27, 2023
CS151 Lecture 8
38

Simulating BPP using PRGs

- Recall: $L \in$ BPP implies exists p.p.t.TM M $x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 2 / 3$ $x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$
- given an input x :
- convert M into circuit C(x, y)
- simplification: pad y so that $|C|=|y|=m$
- hardwire input x to get circuit C_{x}

$$
\operatorname{Pr}_{y}\left[C_{x}(y)=1\right] \geq 2 / 3 \quad \text { ("yes") }
$$

$$
\operatorname{Pr}_{y}\left[C_{x}(y)=1\right] \leq 1 / 3 \quad \text { ("no") }
$$

April $27,2023 \quad$ CS151 Lecture 8

39

Simulating BPP using PRGs

- Use a PRG G with
- output length \mathbf{m}
- seed length \mathbf{t} « m
- error $\varepsilon<1 / 6$
- fooling size $\mathbf{S}=m$
- Compute $\operatorname{Pr}_{z}\left[C_{x}(G(z))=1\right]$ exactly - evaluate $C_{x}(G(z))$ on every seed $z \in\{0,1\}^{t}$
- running time $(\mathrm{O}(\mathrm{m})+($ time for G$)) 2^{\mathrm{t}}$

April 27, 2023
CS151 Lecture 8
40

Simulating BPP using PRGs

- knowing $\operatorname{Pr}_{z}\left[C_{x}(G(z))=1\right]$, can distinguish between two cases:

41

Blum-Micali-Yao PRG

- Initial goal: for all $1>\delta>0$, we will build a family of PRGs $\left\{\mathrm{G}_{\mathrm{m}}\right\}$ with:

output length \mathbf{m} seed length $\mathbf{t}=\mathrm{m}^{\bar{\delta}}$ error $\boldsymbol{\varepsilon}<1 / 6$	fooling size $\mathbf{s}=\mathrm{m}$
running time m^{c}	

$$
\text { error } \varepsilon<1 / 6
$$

- implies: BPP $\subseteq \cap_{\bar{\delta}>0} \operatorname{TIME}\left(2^{n \bar{\delta}}\right) \subsetneq E X P$
- Why? simulation runs in time

$$
\mathrm{O}\left(\mathrm{~m}+\mathrm{m}^{\mathrm{c}}\right)\left(2^{\mathrm{m}^{\delta}}\right)=\mathrm{O}\left(2^{m^{2 \delta}}\right)=\mathrm{O}\left(2^{\mathrm{n}^{2 k \delta}}\right)
$$

$$
\text { Apili 27, } 2023
$$

CS151 Lecture 8
42

