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Monotone circuits

• A question: 
Do all 

poly-time computable monotone functions
have 

poly-size monotone circuits?

– recall: true in non-monotone case
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Monotone circuits

A monotone circuit for CLIQUEn,k

• Input: graph G = (V,E) as adj. matrix, |V|=n
– variable xi,j for each possible edge (i,j)

• ISCLIQUE(S) = monotone circuit that = 1 
iff S ⊆ V is a clique: ⋀!,# ∈%𝑥!,#
CLIQUEn,k computed by monotone circuit:

⋁% ⊆ ', % () ISCLIQUE(S)
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Monotone circuits

• Theorem (Razborov 85): monotone 
circuits for CLIQUEn,k with k = n1/4 must 
have size at least

2Ω(n1/8).

• Proof: 
– rest of lecture
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Proof idea

• “method of approximation”
• suppose C is a monotone circuit for 

CLIQUEn,k

• build another monotone circuit CC that 
“approximates” C gate-by-gate

∨
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Proof idea

• on test collection of positive/negative 
instances of CLIQUEn,k:
– local property: few errors at each gate
– global property: many errors on test collection

• Conclude: C has many gates
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Notation

• input: graph G = (V, E)
• variable xj,k for each potential edge (j, k)
• CC(X1, X2, … Xm), where Xi ⊆ V, means:

⋁!(⋀",$∈&+ 𝑥",$) *

• For example: CC(X1, X2, … Xm) where the 
Xi range over all k-subsets of V
– this is the obvious monotone circuit for 

CLIQUEn,k from a previous slide.
*[CC( ) = 0; (⋀!,# ∈ ∅𝑥!,#)= 1]
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Preview

• approximate circuit CC(X1, X2, … Xm)
• n = # nodes
• k = n1/4 = size of clique
• h = n1/8 = max. size of subsets Xi

– this is “global property” that ensures lots of 
errors

– many graphs G with no k-cliques, but clique 
on Xi of size h

G

Xi
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Preview

• approximate circuit CC(X1, X2, … Xm)
• p = n1/8log n
• M = (p – 1)hh! 
• max # of subsets is M (so m ≤ M)

– critical for “local property” that ensures few 
errors at each gate
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Approximate OR

CC(X1,X2,…Xmʼ)        CC(Y1,Y2,…Ymʼʼ)
• exact OR:

CC(X1,X2,…Xmʼ,Y1,Y2,…Ymʼʼ)
– set sizes still ≤ h
– may be up to 2M sets; need to reduce to M 

∨

Cʼ Cʼʼ
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Approximate OR

– throw away sets?   bad:many errors
– throw away overlapping sets? – better

– throw away special configuration of 
overlapping sets – best
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Approximate OR

• CC(X1,X2,…Xmʼ) 
• CC(Y1,Y2,…Ymʼʼ)
• exact OR:

CC(X1,X2,…Xmʼ,Y1,Y2,…Ymʼʼ)
– while more than M sets, find (h, p)-sunflower; 

replace with its core (“pluck”)
• approximate OR:

CC(pluck(X1,X2,…Xmʼ,Y1,Y2,…Ymʼʼ) )

∨

Cʼ Cʼʼ
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Approximate AND

• CC(X1,X2,…Xmʼ) 
• CC(Y1,Y2,…Ymʼʼ)
• (close to) exact AND:

CC( {(Xi ∪ Yj) : 1 ≤ i ≤ mʼ, 1 ≤ j ≤ mʼʼ} )
– some sets may be larger than h; discard them
– may be up to M2 sets. While > M sets, find (h, p)-

sunflower; replace with its core (“pluck”)
• approximate AND:

CC( pluck ( {(Xi∪Yj) : |Xi∪Yj| ≤ h } ))

∧

Cʼ Cʼʼ
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Test collection

• Positive instances: all graphs G on n 
nodes with a k-clique and no other edges. 

G
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Test collection

• Negative instances:
– k-1 colors
– color each node uniformly 

at random with one of the colors
– edge (x, y) iff x, y different colors
– no k-clique
– include graphs in their multiplicities 

• makes analysis easier 

(k-1)-partite graph
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“Local” analysis

• “false positive”:
– negative example
– gate is supposed to output 0, but our CC 

outputs 1

Lemma: each approximation step 
introduces at most M2(k-1)n/2p false 
positives.
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“Local” analysis
• Proof:

– case 1: OR
CC(X1,X2,…Xmʼ)        CC(Y1,Y2,…Ymʼʼ)
CC(pluck(X1,X2,…Xmʼ,Y1,Y2,…Ymʼʼ))

– given “plucking”: replace Z1… Zp with Z

– bad case: clique on Z, and each petal is 
missing at least one edge

∨

Cʼ Cʼʼ
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“Local” analysis

– what is the probability of a repeated color in 
each Zi but no repeated colors in Z?

Pr[R(Z1)∧R(Z2)…R(Zp) ∧ ¬R(Z)]

≤ Pr[R(Z1)∧R(Z2)…R(Zp)|¬R(Z)]
(definition of conditional probability)
= ∏i Pr[R(Zi) | ¬R(Z)]
(independent events given no repeats in Z)
≤ ∏i Pr[R(Zi)]
(obviously larger)

event R(S) 
= repeated 
colors in S
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“Local” analysis

– for every pair of vertices in Zi, probability of 
same color is 1/(k-1)

– R(Zi) ≤ (h choose 2)/(k-1) ≤ ½
– ∏i Pr[R(Zi)] ≤ (½)p

– # negative examples is (k-1)n

– # false positives in given plucking step is at 
most (½)p(k-1)n

– at most M plucking steps
– # false positives at OR ≤ M(½)p(k-1)n
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“Local” analysis

– case 2: AND

CC(X1,X2,…Xmʼ)        CC(Y1,Y2,…Ymʼʼ)
CC(pluck( {(Xi∪Yj) : |Xi∪Yj| ≤ h } )) 

– discarding sets (Xi∪Yj) larger than h can only 
make circuit accept fewer examples 
• no false positives here

∧

Cʼ Cʼʼ
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“Local” analysis

– up to M2 pluckings
– each introduces at most 

(½)p(k-1)n

false positives (previous slides)

– # false positives at AND ≤ M2(½)p(k-1)n

CS151 Lecture 7

21

April 25, 2023

“Local” analysis

• “false negative”: 
– positive example; 
– gate is supposed to output 1, but our CC 

outputs 0
Lemma: each approximation step 

introduces at most 

false negatives.

- -æ ö
ç ÷- -è ø

2 n h 1
M

k h 1
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“Local” analysis

• Proof:
– Case 1: OR
– plucking can only make circuit accept more 

examples
• no false negatives here.

– Case 2: AND
CC(X1,X2,…Xmʼ)        CC(Y1,Y2,…Ymʼʼ)

CC(pluck( {(Xi∪Yj) : |Xi∪Yj| ≤ h } ))
• for positive examples: clique on Xi and clique on Yj
⇒ clique on Xi∪Yj (no false negatives until discard Xi∪Yj sets)

∨

Cʼ Cʼʼ
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“Local” analysis

– discarding set Z = (Xi∪Yj) larger than h may 
introduce false negatives

– any clique that includes Z is a problem; there 
are at most

such positive examples, since |Z|>h & h<<k
– at most M2 such deletions
– weʼve seen plucking doesnʼt matter

n Z n h 1
k Z k h 1
- - -æ ö æ ö

£ç ÷ ç ÷- - -è øè ø
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“Global” analysis

Lemma: every non-trivial CC outputs 1 on at least 
½ of the negative examples.

• Proof: 
– CC contains some set X of size at most h
– accepts all neg. examples with different colors in X
– probability X has repeated colors is

R(X) ≤ (h choose 2)/(k-1) ≤ ½
– probability over negative examples that CC accepts is 

at least ½.  
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Finishing up

• First possibility: trivial CC, rejects all 
positive examples
– every positive example must have been false 

negative at some gate
– number of gates must be at least:

- -æ öæ ö
ç ÷ç ÷ - -è ø è ø

2n n h 1
/Mk k h 1
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Finishing up

• Second possibility: CC accepts at least ½ 
of negative examples
– every negative example must have been false 

positive at some gate
– number of gates must be at least:

-- -pn 2 n1 (k 1) /M 2 (k 1)
2
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Finishing up

Both quantities are at least 2Ω(n1/8)

- -æ öæ ö
ç ÷ç ÷ - -è ø è ø

2n n h 1
/Mk k h 1

-- -pn 2 n1 (k 1) /M 2 (k 1)
2
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Conclusions

• A question (true in non-monotone case): 
Do all 

poly-time computable monotone functions
have 

poly-size monotone circuits?

• if yes, then we would have just proved P ≠ NP
– why?
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Conclusions

• unfortunately, answer is no

• Razborov later showed similar (super-
polynomial) lower bound for MATCHING, 
which is in P…
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Randomness

• 3 examples of the power of 
randomness 
–communication complexity
–polynomial identity testing
–complexity of finding unique solutions

• randomized complexity classes
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1. Communication complexity

• Goal: compute f(x, y) while communicating as 
few bits as possible between Alice and Bob

• count number of bits exchanged (computation free) 
• at each step: one party sends bits that are a 

function of held input and received bits so far

two parties: Alice and Bob
function f:{0,1}n x {0,1}n → {0,1}

Alice holds x ∈ {0,1}n; Bob holds y ∈ {0,1}n
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Communication complexity

• simple function (equality): 
EQ(x, y) = 1 iff x = y

• simple protocol:
– Alice sends x to Bob (n bits)
– Bob sends EQ(x, y) to Alice (1 bit)
– total: n + 1 bits
– (works for any predicate f)
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Communication complexity

• Can we do better?
– deterministic protocol?
– probabilistic protocol?

• at each step: one party sends bits that are 
a function of held input and received bits so 
far and the result of some coin tosses

• required to output f(x, y) with high 
probability over all coin tosses 
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Communication complexity

Theorem: no deterministic protocol can 
compute EQ(x, y) while exchanging fewer 
than n+1 bits.

• Proof:
– “input matrix”: 

X = {0,1}n

Y = {0,1}n

f(x,y)
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Communication complexity

– assume 1 bit sent at a time, alternating (same 
proof works in general setting)

– A sends 1 bit depending only on x:

X = {0,1}n

Y = {0,1}n
inputs x causing 
A to send 1

inputs x causing 
A to send 0
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Communication complexity

– B sends 1 bit depending only on y and 
received bit:

X = {0,1}n

Y = {0,1}n
inputs y causing 
B to send 1

inputs y causing 
B to send 0
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Communication complexity

– at end of protocol involving k bits of 
communication, matrix is partitioned into at 
most 2k combinatorial rectangles

– bits sent in protocol are the same for every 
input (x, y) in given rectangle

– conclude: f(x,y) must be constant on each 
rectangle
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Communication complexity

– any partition into combinatorial rectangles with 
constant f(x,y) must have 2n + 1 rectangles

– protocol that exchanges ≤ n bits can only create 2n

rectangles, so must exchange at least n+1 bits.  

X = {0,1}n

Y = {0,1}n

1
1

1

1
0

0
Matrix for EQ:
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Communication complexity

• protocol for EQ employing randomness?
– Alice picks random prime p in {1...4n2}, sends:

• p 
• (x mod p) 

– Bob sends: 
• (y mod p)

– players output 1 if and only if:
(x mod p) = (y mod p)
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Communication complexity

– O(log n) bits exchanged
– if x = y, always correct
– if x ≠ y, incorrect if and only if:

p divides |x – y|
– # primes in range is ≥ 2n
– # primes dividing |x – y| is ≤ n
– probability incorrect ≤  1/2

Randomness gives an exponential advantage!!
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2. Polynomial identity testing

• Given: polynomial p(x1, x2, …, xn) as 
arithmetic formula (fan-out 1):

-

*

x1 x2

*

+ -

x3 … xn

*
• multiplication (fan-in 2)

• addition (fan-in 2)

• negation (fan-in 1)
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Polynomial identity testing

• Question: Is p identically zero?
– i.e., is p(x) = 0 for all x ∈ Fn

– (assume |F| larger than degree…)

• “polynomial identity testing” because 
given two polynomials p, q, we can check 
the identity p ≡ q by checking if (p – q) ≡ 0
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Polynomial identity testing

• try all |F|n inputs? 
– may be exponentially many

• multiply out symbolically, check that all 
coefficients are zero?
– may be exponentially many coefficients

• can randomness help?
– i.e., flip coins, allow small probability of wrong 

answer
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let 
p(x1, x2, …, xn) 

be a total degree d polynomial over a field 
F and let S be any subset of F. Then if p is 
not identically 0, 

Prr1,r2,…,rn∈S[ p(r1, r2, …, rn) = 0] ≤ d/|S|.
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Polynomial identity testing

• Proof:
– induction on number of variables n
– base case: n = 1, p is univariate polynomial of 

degree at most d
– at most d roots, so 

Pr[ p(r1) = 0] ≤ d/|S|
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Polynomial identity testing

– write p(x1, x2, …, xn) as
p(x1, x2, …, xn) = Σi (x1)i pi(x2, …, xn)

– k = max. i for which pi(x2, …, xn) not id. zero
– by induction hypothesis:

Pr[ pk(r2, …, rn) = 0] ≤ (d-k)/|S|
– whenever pk(r2, …, rn) ≠ 0, p(x1, r2, …, rn) is a 

univariate polynomial of degree k
Pr[p(r1,r2,…,rn)=0 | pk(r2,…,rn) ≠ 0]  ≤ k/|S|
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Polynomial identity testing

Pr[ pk(r2, …, rn) = 0] ≤ (d-k)/|S|
Pr[p(r1,r2,…,rn)=0 | pk(r2,…,rn) ≠ 0]  ≤ k/|S|

– conclude: 
Pr[ p(r1, …, rn) = 0] ≤ (d-k)/|S| + k/|S| = d/|S|

– Note: can add these probabilities because
Pr[E1] = Pr[E1|E2]Pr[E2] + Pr[E1|¬E2]Pr[¬E2] 

≤ Pr[E2] + Pr[E1|¬E2]
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