
1

CS151
Complexity
Theory

Lecture 6
April 20, 2023

1

April 20, 2023

Relation to other classes

• Clearly NC ⊆ P
– recall P ≡ uniform poly-size circuits

• NC1 ⊆ L
– on input x, compose logspace algorithms for:

• generating C|x|

• converting to formula
• FVAL

CS151 Lecture 6 2

2

April 20, 2023

Relation to other classes
• NL ⊆ NC2: S-T-CONN ∈ NC2

– given G = (V, E), vertices s, t
– A = adjacency matrix (with self-loops)
– (A2)i, j = 1 iff path of length ≤ 2 from node i to

node j
– (An)i, j = 1 iff path of length ≤ n from node i to

node j
– compute with depth log n tree of Boolean

matrix multiplications, output entry s, t
– log2 n depth total

CS151 Lecture 6 3

3

April 20, 2023

NC vs. P
• can every efficient algorithm be efficiently

parallelized?
NC = P

• P-complete problems least-likely to be
parallelizable
– if P-complete problem is in NC, then P = NC
– Why?

we use logspace reductions to show problem
P-complete; L in NC

?

CS151 Lecture 6 4

4

April 20, 2023

NC vs. P
• can every uniform, poly-size Boolean

circuit family be converted into a uniform,
poly-size Boolean formula family?

NC1= P
?

CS151 Lecture 6 5

5

April 20, 2023

NC Hierarchy Collapse

NC1 ⊆ NC2 ⊆ NC3 ⊆ NC4 ⊆ … ⊆ NC

Exercise
if NCi = NCi+1, then NC = NCi

(prove for non-uniform versions of classes)

CS151 Lecture 6 6

6

2

April 20, 2023

Lower bounds

• Recall: “NP does not have polynomial-size
circuits” (NP ⊆ P/poly) implies P ≠ NP

• major goal: prove lower bounds on (non-
uniform) circuit size for problems in NP
– believe exponential
– super-polynomial enough for P ≠ NP
– best bound known: (5-o(1))⋅n
– don’t even have super-polynomial bounds for

problems in NEXP
CS151 Lecture 6 7

7

April 20, 2023

Lower bounds

• lots of work on lower bounds for restricted
classes of circuits

– we’ll see two such lower bounds:
• formulas
• monotone circuits

CS151 Lecture 6 8

8

April 20, 2023

Shannon’s counting argument

• frustrating fact: almost all functions require
huge circuits

Theorem (Shannon): With probability at
least 1 – o(1), a random function

f:{0,1}n → {0,1}
requires a circuit of size Ω(2n/n).

CS151 Lecture 6 9

9

April 20, 2023

Shannon’s counting argument

• Proof (counting):
– B(n) = 22n = # functions f:{0,1}n → {0,1}
– # circuits with n inputs + size s, is at most

C(n, s) ≤ ((n+3)s2)s
s gates

n+3 gate types 2 inputs per gate

CS151 Lecture 6 10

10

April 20, 2023

Shannon’s counting argument

– C(n, c2n/n) < ((2n)c222n/n2)(c2n/n)

< o(1)22c2n

< o(1)22n (if c ≤ ½)

– probability a random function has a
circuit of size s = (½)2n/n is at most

C(n, s)/B(n) < o(1)

C(n, s) ≤ ((n+3)s2)s

CS151 Lecture 6 11

11

April 20, 2023

Shannon’s counting argument

• frustrating fact: almost all functions require
huge formulas

Theorem (Shannon): With probability at
least 1 – o(1), a random function

f:{0,1}n → {0,1}
requires a formula of size Ω(2n/log n).

CS151 Lecture 6 12

12

3

April 20, 2023

Shannon’s counting argument

• Proof (counting):
– B(n) = 22n = # functions f:{0,1}n → {0,1}
– # formulas with n inputs + size s, is at most

F(n, s) ≤ 4s2s(2n)s

4s binary trees with s
internal nodes 2 gate choices per

internal node

2n choices
per leaf

CS151 Lecture 6 13

13

April 20, 2023

Shannon’s counting argument

– F(n, c2n/log n) < (16n)(c2n/log n)

< 16(c2n/log n)2(c2n) = (1 + o(1))2(c2n)

< o(1)22n (if c ≤ ½)

– probability a random function has a
formula of size s = (½)2n/log n is at
most F(n, s)/B(n) < o(1)

F(n, s) ≤ 4s2s(2n)s

CS151 Lecture 6 14

14

April 20, 2023

Andreev function

• best formula lower bound for language in
NP:

Theorem (Andreev, Hastad ‘93): the
Andreev function requires (∧,∨,¬)-
formulas of size at least

Ω(n3-o(1)).

CS151 Lecture 6 15

15

April 20, 2023

Andreev function

selector

yi

n-bit string y
XOR XOR

. . .

log n copies;
n/log n bits each

the Andreev function A(x,y)
A:{0,1}2n → {0,1}

CS151 Lecture 6 16

16

April 20, 2023

Random restrictions
• key idea: given function

f:{0,1}n → {0,1}
restrict by ρ to get fρ
– ρ sets some variables to 0/1, others remain

free
• R(n, єn) = set of restrictions that leave єn

variables free
• Definition: L(f) = smallest (∧,∨,¬) formula

computing f (measured as leaf-size)
CS151 Lecture 6 17

17

April 20, 2023

Random restrictions

• observation:
Eρ←R(n, єn)[L(fρ)] ≤ єL(f)

– each leaf survives with probability є
• may shrink more…

– propogate constants
Lemma (Hastad 93): for all f

Eρ←R(n, єn)[L(fρ)] ≤ O(є2-o(1)L(f))

CS151 Lecture 6 18

18

4

April 20, 2023

Hastad’s shrinkage result
• Proof of theorem:

– Recall: there exists a function
h:{0,1}log n → {0,1}

for which L(h) > n/2loglog n.
– hardwire truth table of that function into y to

get A*(x)
– apply random restriction from

R(n, m = 2(log n)(ln log n))
to A*(x).

CS151 Lecture 6 19

19

April 20, 2023

The lower bound

• Proof of theorem (continued):
– probability given XOR is killed by restriction is

probability that we “miss it” m times:
(1 – (n/log n)/n)m ≤ (1 – 1/log n)m

≤ (1/e)2ln log n ≤ 1/log2n
– probability even one of XORs is killed by

restriction is at most:
log n(1/log2n) = 1/log n < ½.

CS151 Lecture 6 20

20

April 20, 2023

The lower bound
– (1): probability even one of XORs is killed by

restriction is at most:
log n(1/log2n) = 1/log n < ½.

– (2): by Markov:
Pr[L(A*ρ) > 2 Eρ←R(n, m)[L(A*ρ)]] < ½.

– Conclude: for some restriction ρ
• all XORs survive, and
• L(A*ρ) ≤ 2 Eρ←R(n, m) [L(A*ρ)]

CS151 Lecture 6 21

21

April 20, 2023

The lower bound
• Proof of theorem (continued):

– if all XORs survive, can restrict formula further
to compute hard function h
• may need to add ¬’s

L(h) = n/2loglogn ≤ L(A*ρ)

≤ 2Eρ←R(n, m)[L(A*ρ)] ≤ O((m/n)2-o(1)L(A*))

≤ O(((log n)(ln log n)/n)2-o(1) L(A*))

– implies Ω(n3-o(1)) ≤ L(A*) ≤ L(A).
CS151 Lecture 6 22

22

April 20, 2023

Clique

CLIQUE = { (G, k) | G is a graph with a
clique of size ≥ k }

(clique = set of vertices every pair of which are
connected by an edge)

• CLIQUE is NP-complete.

CS151 Lecture 6 23

23

April 20, 2023

Circuit lower bounds

• We think that NP requires exponential-size
circuits.

• Where should we look for a problem to
attempt to prove this?

• Intuition: “hardest problems” – i.e., NP-
complete problems

CS151 Lecture 6 24

24

5

April 20, 2023

Circuit lower bounds

• Formally:
– if any problem in NP requires super-

polynomial size circuits
– then every NP-complete problem requires

super-polynomial size circuits

– Proof idea: poly-time reductions can be
performed by poly-size circuits using a variant
of CVAL construction

CS151 Lecture 6 25

25

April 20, 2023

Monotone problems

• Definition: monotone language = language
L ⊆ {0,1}*

such that x ∈ L implies x’ ∈ L for all x ≼ x’.

– flipping a bit of the input from 0 to 1 can only
change the output from “no” to “yes”
(or not at all)

CS151 Lecture 6 26

26

April 20, 2023

Monotone problems

• some NP-complete languages are
monotone
– e.g. CLIQUE (given as adjacency matrix):

– others: HAMILTON CYCLE, SET COVER…
– but not SAT, KNAPSACK…

CS151 Lecture 6 27

27

April 20, 2023

Monotone circuits

A restricted class of circuits:

• Definition: monotone circuit = circuit
whose gates are ANDs (∧), ORs (∨), but
no NOTs

• can compute exactly the monotone fns.
– monotone functions closed under AND, OR

CS151 Lecture 6 28

28

April 20, 2023

Monotone circuits

• A question:
Do all

poly-time computable monotone functions
have

poly-size monotone circuits?

– recall: true in non-monotone case

CS151 Lecture 6 29

29

April 20, 2023

Monotone circuits

A monotone circuit for CLIQUEn,k

• Input: graph G = (V,E) as adj. matrix, |V|=n
– variable xi,j for each possible edge (i,j)

• ISCLIQUE(S) = monotone circuit that = 1
iff S ⊆ V is a clique: ⋀",$ ∈ & 𝑥",$
CLIQUEn,k computed by monotone circuit:

⋁" ⊆ $, " &' ISCLIQUE(S)

CS151 Lecture 6 30

30

6

April 20, 2023

Monotone circuits

• Size of this monotone circuit for
CLIQUEn,k:

• when k = n1/4, size is approximately:

æ öæ ö
ç ÷ç ÷

è øè ø

n k
k 2

()Wæ öæ ö »ç ÷ ç ÷è ø è ø

1/4
1/4n 1/4

n
4

2

1/
n n

2
n

n
CS151 Lecture 6 31

31

April 20, 2023

Monotone circuits

• Theorem (Razborov 85): monotone
circuits for CLIQUEn,k with k = n1/4 must
have size at least

2Ω(n1/8).

• Proof:
– rest of lecture

CS151 Lecture 6 32

32

April 20, 2023

Proof idea

• “method of approximation”
• suppose C is a monotone circuit for

CLIQUEn,k

• build another monotone circuit CC that
“approximates” C gate-by-gate

∨

CS151 Lecture 6 33

33

April 20, 2023

Proof idea

• on test collection of positive/negative
instances of CLIQUEn,k:
– local property: few errors at each gate
– global property: many errors on test collection

• Conclude: C has many gates

CS151 Lecture 6 34

34

April 20, 2023

Notation
• input: graph G = (V, E)
• variable xj,k for each potential edge (j, k)
• CC(X1, X2, … Xm), where Xi ⊆ V, means:

⋁$(⋀%,'∈)) 𝑥%,') *
• For example: CC(X1, X2, … Xm) where the

Xi range over all k-subsets of V
– this is the obvious monotone circuit for

CLIQUEn,k from a previous slide.
*[CC() = 0; (⋀",$ ∈∅𝑥",$)= 1] 35

35

April 20, 2023

Preview

• approximate circuit CC(X1, X2, … Xm)
• n = # nodes
• k = n1/4 = size of clique
• h = n1/8 = max. size of subsets Xi

– this is “global property” that ensures lots of
errors

– many graphs G with no k-cliques, but clique
on Xi of size h

G

Xi

CS151 Lecture 6 36

36

7

April 20, 2023

Preview

• approximate circuit CC(X1, X2, … Xm)
• p = n1/8log n
• M = (p – 1)hh!
• max # of subsets is M (so m ≤ M)

– critical for “local property” that ensures few
errors at each gate

CS151 Lecture 6 37

37

April 20, 2023

Building CC

• CC (“crude circuit”) for circuit C defined
inductively as follows:
– CC for single variable xj,k is just CC({ j, k })

• no errors yet!
– CC for circuit C of form:

– “approximate OR” of CC for C’, CC for C’’

∨

C’ C’’

CS151 Lecture 6 38

38

April 20, 2023

Building CC
– CC for circuit C of form:

– “approximate AND” of CC for C’, CC for C’’

– “approximate OR” and “approximate AND”
steps introduce errors

∧

C’ C’’

CS151 Lecture 6 39

39

April 20, 2023

Approximate OR

CC(X1,X2,…Xm’) CC(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– set sizes still ≤ h
– may be up to 2M sets; need to reduce to M

∨
C’ C’’

CS151 Lecture 6 40

40

April 20, 2023

Approximate OR
– throw away sets? bad:many errors
– throw away overlapping sets? – better

– throw away special configuration of
overlapping sets – best

CS151 Lecture 6 41

41

April 20, 2023

Sunflowers

• Definition: (h, p)-sunflower is a family of p
sets, each of size at most h, such that
intersection of every pair is a subset S (the
“core”).

CS151 Lecture 6 42

42

8

April 20, 2023

Sunflowers

Lemma (Erdös-Rado): Every family of more
than M = (p-1)hh! sets, each of size at
most h, contains an (h, p)-sunflower.

• Proof:
– not hard
– in Papadimitriou, elsewhere

CS151 Lecture 6 43

43

April 20, 2023

Approximate OR

• CC(X1,X2,…Xm’)
• CC(Y1,Y2,…Ym’’)
• exact OR:

CC(X1,X2,…Xm’,Y1,Y2,…Ym’’)
– while more than M sets, find (h, p)-sunflower;

replace with its core (“pluck”)
• approximate OR:

CC(pluck(X1,X2,…Xm’,Y1,Y2,…Ym’’))

∨
C’ C’’

CS151 Lecture 6 44

44

April 20, 2023

Approximate AND
• CC(X1,X2,…Xm’)
• CC(Y1,Y2,…Ym’’)
• (close to) exact AND:

CC({(Xi ∪ Yj) : 1 ≤ i ≤ m’, 1 ≤ j ≤ m’’})
– some sets may be larger than h; discard them
– may be up to M2 sets. While > M sets, find (h, p)-

sunflower; replace with its core (“pluck”)
• approximate AND:

CC(pluck ({(Xi∪Yj) : |Xi∪Yj| ≤ h }))

∧

C’ C’’

CS151 Lecture 6 45

45

