

1

Relation to other classes

- $\mathrm{NL} \subseteq \mathrm{NC}_{2}: ~ \mathrm{~S}-\mathrm{T}-\mathrm{CONN} \in \mathrm{NC}_{2}$
- given $G=(V, E)$, vertices s, t
- A = adjacency matrix (with self-loops)
$-\left(A^{2}\right)_{i, j}=1$ iff path of length ≤ 2 from node i to node j
$-\left(A^{n}\right)_{i, j}=1$ iff path of length $\leq n$ from node i to node j
- compute with depth $\log n$ tree of Boolean matrix multiplications, output entry s, t
$-\log ^{2} \mathrm{n}$ depth total
April 20, 2023
CS151 Lecture 6

3

NC vs. P

- can every uniform, poly-size Boolean circuit family be converted into a uniform, poly-size Boolean formula family?
$\mathrm{NC}_{1} \stackrel{?}{=} \mathrm{P}$

Relation to other classes

- Clearly NC $\subseteq P$
- recall $\mathbf{P} \equiv$ uniform poly-size circuits
- $N C_{1} \subseteq L$
- on input x, compose logspace algorithms for:
- generating $\mathrm{C}_{|\mathrm{x}|}$
- converting to formula
- FVAL

NC vs. P

- can every efficient algorithm be efficiently parallelized?

$$
N C \stackrel{?}{=} P
$$

- P-complete problems least-likely to be parallelizable
- if \mathbf{P}-complete problem is in NC, then $\mathbf{P}=\mathbf{N C}$
-Why?
we use logspace reductions to show problem P-complete; L in NC

April 20, 2023
CS151 Lecture 6

4

NC Hierarchy Collapse

$\mathrm{NC}_{1} \subseteq \mathrm{NC}_{2} \subseteq \mathrm{NC}_{3} \subseteq \mathrm{NC}_{4} \subseteq \ldots \subseteq \mathrm{NC}$

Exercise
if $\mathrm{NC}_{\mathrm{i}}=\mathrm{NC}_{\mathrm{i}+1}$, then $\mathrm{NC}=\mathrm{NC}_{\mathrm{i}}$
(prove for non-uniform versions of classes)

Lower bounds

- Recall: "NP does not have polynomial-size circuits" (NP ¢ P/poly) implies P = NP
- major goal: prove lower bounds on (nonuniform) circuit size for problems in NP
- believe exponential
- super-polynomial enough for $\mathbf{P} \neq \mathbf{N P}$
- best bound known: (5-o(1)).n
- don't even have super-polynomial bounds for problems in NEXP
April 20, $2023 \quad$ CS151 Lecture 6

7

Shannon's counting argument

- frustrating fact: almost all functions require huge circuits

Theorem (Shannon): With probability at least $1-o(1)$, a random function

$$
\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}
$$

requires a circuit of size $\Omega\left(2^{n} / n\right)$.

9

Shannon's counting argument $C(n, s) \leq\left((n+3) s^{2}\right)^{s}$
$-C\left(n, c 2^{n} / n\right)<\left((2 n) c^{2} 2^{2 n / n^{2}}\right)^{\left(c 2^{n} / n\right)}$
$<o(1) 2^{2 c 2^{n}}$
$<o(1) 2^{2^{n}} \quad$ (if $c \leq 1 / 2$)

- probability a random function has a circuit of size $s=(1 / 2) 2^{n} / n$ is at most

$$
\mathrm{C}(\mathrm{n}, \mathrm{~s}) / \mathrm{B}(\mathrm{n})<\mathrm{o}(1)
$$

Shannon's counting argument

- Proof (counting):
$-B(n)=2^{2^{n}}=\#$ functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- \# formulas with n inputs + size s, is at most

$$
\begin{array}{ll}
\quad \mathrm{F}(\mathrm{n}, \mathrm{~s}) \leq 4^{s} 2^{s}(2 n)^{s} & \begin{array}{l}
2 n \text { choices } \\
\text { per leaf }
\end{array} \\
\begin{array}{ll}
4 s \text { binary trees with } s & \text { gate choices per } \\
\text { internal nodes }
\end{array} & \begin{array}{l}
2 \text { giternal node }
\end{array}
\end{array}
$$

Andreev function

- best formula lower bound for language in NP:

Theorem (Andreev, Hastad '93): the Andreev function requires ($\wedge, \mathrm{V}, \neg)$ formulas of size at least

$$
\Omega\left(n^{3-0}(1)\right) .
$$

CS151 Lecture 6

Random restrictions

- key idea: given function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

restrict by ρ to get f_{ρ}
$-\rho$ sets some variables to $0 / 1$, others remain free

- $R(n, \epsilon n)=$ set of restrictions that leave ϵn variables free
- Definition: $L(f)=$ smallest (\wedge, V, \neg) formula computing f (measured as leaf-size)

Shannon's counting argument

$F(n, s) \leq 4^{s} 2^{s}(2 n)^{s}$
$-F\left(n, c 2^{n} / \log n\right)<(16 n)^{\left(c 2^{n} / \log n\right)}$
$<16^{\left(c 2^{n} / \log n\right)} 2^{\left(c 2^{n}\right)}=(1+o(1)) 2^{\left(c 2^{n}\right)}$
$<o(1) 2^{2^{n}} \quad$ (if $c \leq 1 / 2$)

- probability a random function has a formula of size $s=(1 / 2) 2^{n} / \log n$ is at most $F(n, s) / B(n)<o(1)$

April 20, 2023
CS151 Lecture 6
14
14

Andreev function

the Andreev function $A(x, y)$ $A:\{0,1\}^{2 n} \rightarrow\{0,1\}$

16

Random restrictions

- observation:

$$
E_{p \leftarrow R(n, \epsilon n)}\left[L\left(f_{p}\right)\right] \leq \epsilon L(f)
$$

- each leaf survives with probability ϵ
- may shrink more...
- propogate constants

Lemma (Hastad 93): for all f

$$
\mathrm{E}_{\rho \leftarrow \mathrm{R}(\mathrm{n}, \mathrm{\varepsilon})}\left[\mathrm{L}\left(\mathrm{f}_{\mathrm{p}}\right)\right] \leq \mathrm{O}\left(\epsilon^{2-\mathrm{o}(1)} \mathrm{L}(\mathrm{f})\right)
$$

Hastad's shrinkage result

- Proof of theorem:

- Recall: there exists a function

$$
\mathrm{h}:\{0,1\}^{\log n} \rightarrow\{0,1\}
$$

for which $L(h)>n / 2 \log \log n$.

- hardwire truth table of that function into y to get $\mathrm{A}^{*}(\mathrm{x})$
- apply random restriction from $R(n, m=2(\log n)(\ln \log n))$
to $A^{*}(x)$.
April 20, 2023
CS151 Lecture 6
19

The lower bound

- (1): probability even one of XORs is killed by restriction is at most:

$$
\log n\left(1 / \log ^{2} n\right)=1 / \log n<1 / 2
$$

- (2): by Markov:

$$
\operatorname{Pr}\left[L\left(A_{\rho}^{*}\right)>2 E_{\rho \leftarrow R(n, m)}\left[L\left(A_{\rho}^{*}\right)\right]\right]<1 / 2 .
$$

- Conclude: for some restriction ρ
- all XORs survive, and
- $L\left(A_{\rho}^{*}\right) \leq 2 E_{\rho-R(n, m)}\left[L\left(A_{\rho}^{*}\right)\right]$

April 20, 2023
CS151 Lecture 6

Clique

$$
\begin{aligned}
\text { CLIQUE }= & \{(\mathrm{G}, \mathrm{k}) \mid \mathrm{G} \text { is a graph with a } \\
& \text { clique of size } \geq \mathrm{k}\}
\end{aligned}
$$

(clique $=$ set of vertices every pair of which are connected by an edge)

- CLIQUE is NP-complete.

Circuit lower bounds

- We think that NP requires exponential-size circuits.
- Where should we look for a problem to attempt to prove this?
- Intuition: "hardest problems" - i.e., NPcomplete problems

Circuit lower bounds

- Formally:
- if any problem in NP requires superpolynomial size circuits
- then every NP-complete problem requires super-polynomial size circuits
- Proof idea: poly-time reductions can be performed by poly-size circuits using a variant of CVAL construction

Monotone problems

- some NP-complete languages are monotone
- e.g. CLIQUE (given as adjacency matrix):

- others: HAMILTON CYCLE, SET COVER...
- but not SAT, KNAPSACK...

Monotone circuits

- A question:

Do all
poly-time computable monotone functions have poly-size monotone circuits?

- recall: true in non-monotone case

CS151 Lecture 6

Monotone problems

- Definition: monotone language = language $L \subseteq\{0,1\}^{*}$
such that $x \in L$ implies $x^{\prime} \in L$ for all $x \preccurlyeq x^{\prime}$.
- flipping a bit of the input from 0 to 1 can only change the output from "no" to "yes" (or not at all)

Monotone circuits

A restricted class of circuits:

- Definition: monotone circuit = circuit whose gates are ANDs (\wedge), ORs (V), but no NOTs
- can compute exactly the monotone fns.
- monotone functions closed under AND, OR

April 20, 2023
CS151 Lecture 6
28

28

Monotone circuits

A monotone circuit for CLIQUE n, k

- Input: graph $G=(V, E)$ as adj. matrix, $|V|=n$ - variable $\mathrm{x}_{\mathrm{i}, \mathrm{j}}$ for each possible edge (i,j)
- $\operatorname{ISCLIQUE}(S)=$ monotone circuit that $=1$ iff $\mathrm{S} \subseteq \mathrm{V}$ is a clique: $\quad \bigwedge_{i, j \in S} x_{i, j}$ CLIQUEn,k computed by monotone circuit:

$$
\mathrm{V}_{S \subseteq V,|S|=k} \text { ISCLIQUE(S) }
$$

Monotone circuits

- Size of this monotone circuit for CLIQUE $_{n, k}$:

$$
\binom{n}{k}\binom{k}{2}
$$

- when $\mathrm{k}=\mathrm{n}^{1 / 4}$, size is approximately:

$$
\left(\frac{n}{n^{1 / 4}}\right)^{n^{1 / 4}}\left(\frac{n^{1 / 4}}{2}\right)^{2} \approx n^{\Omega\left(n^{1 / 4}\right)}
$$

Proof idea

- "method of approximation"
- suppose C is a monotone circuit for CLIQUEn,k
- build another monotone circuit CC that "approximates" C gate-by-gate

Notation

- input: graph $G=(V, E)$
- variable $\mathrm{x}_{\mathrm{j}, \mathrm{k}}$ for each potential edge (j, k)
- $\mathrm{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}\right)$, where $\mathrm{X}_{\mathrm{i}} \subseteq \mathrm{V}$, means:

$$
\bigvee_{i}\left(\bigwedge_{j, k \in X_{i}} x_{j, k}\right)^{*}
$$

- For example: $\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m}\right)$ where the X_{i} range over all k-subsets of V
- this is the obvious monotone circuit for CLIQUE $_{n, k}$ from a previous slide.

$$
{ }^{*}\left[C C()=0 ;\left(\Lambda_{i, j \in \emptyset} x_{i, j}\right)=1\right]_{35}
$$

Monotone circuits

- Theorem (Razborov 85): monotone circuits for CLIQUE n, k with $k=n^{1 / 4}$ must have size at least

$$
2^{\Omega\left(n^{1 / 8}\right)}
$$

- Proof:
- rest of lecture

Proof idea

- on test collection of positive/negative instances of CLIQUE $_{n, k}$:
- local property: few errors at each gate
- global property: many errors on test collection
- Conclude: C has many gates

Preview

- approximate circuit $\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m}\right)$
- $\mathrm{n}=$ \# nodes
- $k=n^{1 / 4}=$ size of clique
- $h=n^{1 / 8}=$ max. size of subsets X_{i}

- this is "global property" that ensures lots of errors
- many graphs G with no k-cliques, but clique on X_{i} of size h

Preview

- approximate circuit $\operatorname{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}\right)$
- $p=n^{1 / 8} \log n$
- $M=(p-1)^{h} h!$
- max \# of subsets is M (so $\mathrm{m} \leq \mathrm{M}$)
- critical for "local property" that ensures few errors at each gate

Building CC

- CC for circuit C of form:

- "approximate AND" of CC for C', CC for C"
- "approximate OR" and "approximate AND" steps introduce errors

Approximate OR

- throw away sets? bad:many errors
- throw away overlapping sets? - better
- throw away special configuration of overlapping sets - best

Building CC

- CC ("crude circuit") for circuit C defined inductively as follows:
- CC for single variable $\mathrm{x}_{\mathrm{j}, \mathrm{k}}$ is just $\mathrm{CC}(\{\mathrm{j}, \mathrm{k}\})$
- no errors yet!
- CC for circuit C of form:

- "approximate OR" of CC for C', CC for C"

Approximate OR

$$
\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}\right) \quad \operatorname{CC}\left(Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

- exact OR:

$$
C C\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}, Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

- set sizes still $\leq h$
- may be up to 2 M sets; need to reduce to M

Sunflowers

- Definition: (h, p)-sunflower is a family of p sets, each of size at most h, such that intersection of every pair is a subset S (the "core").

Sunflowers

Lemma (Erdös-Rado): Every family of more than $M=(p-1)^{h} h$! sets, each of size at most h, contains an (h, p)-sunflower.

- Proof:
- not hard
- in Papadimitriou, elsewhere

43

Approximate OR

- $\mathrm{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}^{\prime}}\right)$
- $C C\left(Y_{1}, Y_{2}, \ldots Y_{m}{ }^{\prime \prime}\right)$

- exact OR:

$$
C C\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}, Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

- while more than M sets, find (h, p)-sunflower; replace with its core ("pluck")
- approximate OR: CC(pluck $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}^{\prime}}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \mathrm{Y}_{\mathrm{m}^{\prime \prime}}\right)$)

Approximate AND

- $\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}\right)$
- $C C\left(Y_{1}, Y_{2}, \ldots Y_{m "}\right)$

- (close to) exact AND:
$\operatorname{CC}\left(\left\{\left(X_{i} \cup Y_{j}\right): 1 \leq i \leq m, 1 \leq j \leq m "\right\}\right)$
- some sets may be larger than h ; discard them
- may be up to M^{2} sets. While > M sets, find (h, p)sunflower; replace with its core ("pluck")
- approximate AND:

CC(pluck ($\left.\left\{\left(\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right):\left|\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right| \leq \mathrm{h}\right\}\right)$)

