

1

Two startling theorems

- Strongly believe $P \neq N P$
- nondeterminism seems to add enormous power
- for space: Savitch '70:

NPSPACE = PSPACE
and
$N L \subseteq$ SPACE $\left(\log ^{2} n\right)$

April 18,2023
CS151 Lecture 5
2

Proof of Theorem

- input: $G=(V, E)$, two nodes s and t - recursive algorithm:
$/^{*}$ return true iff path from x to y of length at most 2^{i} */ $\operatorname{PATH}(x, y, i)$
if $i=0$ return $(x=y$ or $(x, y) \in E) \quad / *$ base case */ for z in V
if PATH($x, z, i-1$) and PATH($z, y, i-1$) return(true); return(false);
end
Apili 18, 2023
CS151 Lecture 5 ${ }^{5}$

Savitch's Theorem

Theorem: $S T C O N N \subseteq$ SPACE $\left(\log ^{2} n\right)$

- Corollary: $\mathrm{NL} \subseteq$ SPACE $\left(\log ^{2} \mathrm{n}\right)$
- Corollary: NPSPACE = PSPACE

Appil 18, 2023
CS151 Lecture 5
4

Savitch's Theorem
Theorem: STCONN \subseteq SPACE $\left(\log ^{2} n\right)$
- Corollary: $\mathrm{NL} \subseteq$ SPACE $\left(\log ^{2} n\right)$
- Corollary: NPSPACE $=$ PSPACE

5

Two startling theorems

- Strongly believe NP $=$ coNP
- seems impossible to convert existential into universal
- for space: Immerman/Szelepscényi '87/'88:

	NL $=$ coNL	
Apil 18, 2023	cs151 Lecture 5	3

3

Proof of Theorem

- answer to STCONN: PATH(s, t, log n)
- space used:
- (depth of recursion) x (size of "stack record")
- depth $=\log \mathrm{n}$
- claim stack record: "(x, y, i)" sufficient - size O(log n)
- when return from $\operatorname{PATH}(a, b, i)$ can figure out what to do next from record (a, b, i) and previous record

Apill 18,2023
CS151 Lecture 5
6

Nondeterministic space - Robust nondeterministic space classes:		
NL $=$ NSPACE $(\log \mathrm{n})$		
NPSPACE $=U_{k} \operatorname{NSPACE}\left(\mathrm{n}^{k}\right)$		
${ }^{\text {Soli } 13.203}$	csist eemes	,

7

Second startling theorem

- Strongly believe NP \neq coNP
- seems impossible to convert existential into universal
- for space: Immerman/Szelepscényi '87/'88:
$\mathrm{NL}=\mathrm{coNL}$

Apili 18, 2023
CS151 Lecture 5
8 reachable from s, can solve problem

- for each $v \in V$, guess if it is reachable
- if yes, guess path from s to v -if guess doesn't lead to v, reject.
-if $\mathrm{v}=\mathrm{t}$, reject.
-else counter++
- if counter = count accept

April 18, 2023
CS151 Leeture 5
${ }^{11}$

11

I-S Theorem

Theorem: ST-NON-CONN \in NL

- Proof: slightly tricky setup:
- input: $G=(V, E)$, two nodes s, t

9

10

I-S Theorem

- every computation path has sequence of guesses...
- only way computation path can lead to accept:
- correctly guessed reachable/unreachable for each node v
- correctly guessed path from s to v for each reachable node v
- saw all reachable nodes
- t not among reachable nodes

Apili 18,2023
CS151 Lecture 5
${ }^{12}$
12

I-S Theorem

- Outline: in n phases, compute

$$
R(1), R(2), R(3), \ldots R(n)
$$

- only $O(\log n)$ bits of storage between phases - in end, lots of computation paths that lead to reject
- only computation paths that survive have computed correct value of $R(n)$
- apply observation.

April 18, 2023
CS151 Lecture 5
${ }^{14}$
14

I-S Theorem

- computing $R(i+1)$ from $R(i)$:

- For each $v \in V$, guess if v reachable from s in at most $\mathrm{i}+1$ steps

Appil 18, 2023
15
15

16

I-S Theorem

- correctness of procedure:
- two types of errors we can make
- (1) might guess v is reachable in at most i+1 steps when it is not
- won't be able to guess path from s to v of correct length, so we will reject.
\qquad - "easy" type of error

April 18,2023

CS151 Lecture 5
17

I-S Theorem

- (2) might guess v is not reachable in at most $i+1$ steps when it is
- then must not see v or neighbor of v while visiting nodes reachable in i steps.
- but forced to visit $R(i)$ distinct nodes
- therefore must try to visit node v that is not reachable in $\leq i$ isteps
- won't be able to guess path from s to v of correct length, so we will reject.

Apili 18,2023
"easy" type of error
CS151 Lecture 5
18

Summary		
- nondeterministic space classes		
NL and NPSPACE		
- ST-CONN NL-complete		
Anal 18.203	${ }^{\text {csisf Leatues }}$	19

19

Summary

- Savitch: NPSPACE = PSPACE
- Proof: ST-CONN \in SPACE $\left(\log ^{2} \mathbf{n}\right.$)
- open question:
NL = L?
- Immerman/Szelepcsényi : NL = coNL
- Proof: ST-NON-CONN \in NL

Appil 18,2023
CS151 Lecture 5
${ }^{20}$
April 18, 2023
CS151 Lecture 5
21

22

Outline

- Boolean circuits and formulas
- uniformity and advice
- the NC hierarchy and parallel computation
- the quest for circuit lower bounds
- a lower bound for formulas

April 18, 2023
CS151 Lecture 5

Boolean circuits

- circuit C
- directed acyclic graph
- nodes: AND (^); OR (v) NOT ($\neg)$; variables x_{i}

- C computes function f: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ in natural way
- identify C with function f it computes

April 18, 2023
CS151 Lecture 5

24

25

Circuit families

- circuit works for specific input length
- we're used to f: $\sum^{*} \rightarrow\{0,1\}$
- circuit family : a circuit for each input length $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots={ }^{\prime}\left\{\mathrm{C}_{n}\right\}$ "
- " $\left\{\mathrm{C}_{n}\right\}$ computes f " iff for all x

$$
C_{|x|}(x)=f(x)
$$

- " $\left\{\mathrm{C}_{n}\right\}$ decides L ", where L is the language associated with f
Apili 18,2023
CS151 Lecture 5
${ }^{26}$
26

Connection to TMs

- given TM M running in time $\mathrm{t}(\mathrm{n})$ decides language L
- can build circuit family $\left\{\mathrm{C}_{n}\right\}$ that decides L
- size of $\mathrm{C}_{\mathrm{n}}=\mathrm{O}\left(\mathrm{t}(\mathrm{n})^{2}\right)$
- Proof: CVAL construction
- Conclude: $L \in \mathbf{P}$ implies family of polynomial-size circuits that decides L

Apili 18, 2023
CS151 Lecture 5
27
27

Connection to TMs

- other direction?
- A poly-size circuit family:
$-C_{n}=\left(x_{1} \vee \neg x_{1}\right)$ if M_{n} halts
$-C_{n}=\left(x_{1} \wedge \neg x_{1}\right)$ if M_{n} loops
- decides (unary version of) HALT!
- oops...

Apil 18, 2023
CS151 Leeture 5
${ }^{28}$
28

Uniformity

- Strange aspect of circuit family:
- can "encode" (potentially uncomputable) information in family specification
- solution: uniformity - require specification is simple to compute
Definition: circuit family $\left\{\mathrm{C}_{n}\right\}$ is logspace uniform iff $T M M$ outputs C_{n} on input 1^{n} and runs in $\mathrm{O}(\log \mathrm{n})$ space

April 18, 2023

CS151 Lecture 5
${ }^{29}$
29

Uniformity

Theorem: $\mathbf{P}=$ languages decidable by logspace uniform, polynomial-size circuit families $\left\{\mathrm{C}_{n}\right\}$.

- Proof:
- already saw (\Rightarrow)
$-(\Leftarrow)$ on input x, generate $C_{|x|}$, evaluate it and accept iff output = 1

Appil 18, 2023
CS151 Lecture 5
${ }^{30}$

TMs that take advice

- family $\left\{\mathrm{C}_{n}\right\}$ without uniformity constraint is called "non-uniform"
- regard "non-uniformity" as a limited resource just like time, space, as follows:
- add read-only "advice" tape to TM M
$-M$ "decides L with advice $A(n)$ " iff
$M(x, A(|x|))$ accepts $\Leftrightarrow x \in L$
- note: $A(n)$ depends only on $|x|$

Apili 18, 2023
CS151 Lecture 5
${ }_{31}$
31

TMs that take advice

- Definition: $\operatorname{TIME}(t(n)) / f(n)=$ the set of those languages L for which:
-there exists $A(n)$ s.t. $|A(n)| \leq f(n)$
-TM M decides L with advice $A(n)$ in time $\mathrm{t}(\mathrm{n})$
- most important such class:

$$
\text { P/poly }=U_{k} \operatorname{TIME}\left(n^{k}\right) / n^{k}
$$

April $88,2023 \quad$ CS151 Lecture 5
32

TMs that take advice

Theorem: $L \in P /$ poly iff L decided by family of (non-uniform) polynomial size circuits.

- Proof:
$-(\Rightarrow) C_{n}$ from CVAL construction; hardwire advice A(n)
$-(\Leftarrow)$ define $A(n)=$ description of C_{n}; on input x, TM simulates $\mathrm{C}_{|\mathrm{x}|}(\mathrm{x})$

April 18, 2023
CS151 Lecture 5
${ }^{33}$

33

Approach to P/NP

- Believe NP $=\mathbf{P}$
- equivalent: "NP does not have uniform, polynomial-size circuits"
- Even believe NP \ddagger P/poly
- equivalent: "NP (or, e.g. SAT) does not have polynomial-size circuits"
- implies $\mathbf{P} \neq \mathbf{N P}$
- many believe: best hope for $\mathbf{P} \neq \mathbf{N P}$

Apili 18, 2023
CS151 Lecture 5
${ }^{34}$
34

Parallelism

- uniform circuits allow refinement of polynomial time:

April 18, 2023
CS151 Lecture 5
35

Parallelism

- the NC ("Nick's Class") Hierarchy (of logspace uniform circuits):
$N C_{k}=O\left(\log ^{k} n\right)$ depth, poly(n) size

$$
N C=U_{k} N C_{k}
$$

- captures "efficiently parallelizable problems"
- not realistic? overly generous
- OK for proving non-parallelizable

Appil 18, 2023
cS151 Lecture 5
36

37

Matrix Multiplication

- two details
- arithmetic matrix multiplication..
$A=\left(a_{i, k}\right) B=\left(b_{k, j}\right) \quad(A B)_{i, j}=\sum_{k}\left(a_{i, k} \times b_{k, j}\right)$
... vs. Boolean matrix multiplication:
$A=\left(a_{i, k}\right) B=\left(b_{k, j}\right) \quad(A B)_{i, j}=v_{k}\left(a_{i, k} \wedge b_{k, j}\right)$
- single output bit: to make matrix multiplication a language: on input $A, B,(i, j)$ output $(A B)_{i, j}$

April 18, 2023	CS151 Leeture 5	38

April 18, $2023 \quad$ CS151 Lecture 5

- Boolean Matrix Multiplication is in NC_{1} - level 1: compute n ANDS: $a_{i, k} \wedge b_{k, j}$
- next $\log n$ levels: tree of ORS
$-\mathrm{n}^{2}$ subtrees for all pairs (i, j)
- select correct one and output

39

Boolean formulas and $\mathbf{N C}_{1}$

- Previous circuit is actually a formula. This is no accident:

Theorem: $L \in \mathrm{NC}_{1}$ iff decidable by polynomial-size uniform* family of Boolean formulas.

Note: we measure formula size by leaf-size
April 18, 2023
CS151 Lecture 5
40

Boolean formulas and $\mathbf{N C}_{1}$

- Proof:
$-(\Rightarrow)$ convert $\mathbf{N C}_{1}$ circuit into formula - recursively:

- note: logspace transformation (stack depth $\log \mathrm{n}$, stack record 1 bit - "left" or "right")

Apill $18,2023 \quad$ CS151 Lecture 5
CS151 Lecture 5
${ }^{41}$

Boolean formulas and $\mathbf{N C}_{1}$

$-(\Leftarrow)$ convert formula of size n into formula of depth $\mathrm{O}(\log \mathrm{n})$

- note: size $\leq 2^{\text {depth }}$, so new formula has poly(n) size
key transformation

42

Boolean formulas and $\mathbf{N C}_{\mathbf{1}}$

- D any minimal subtree with size at least $n / 3$ - implies size(D) $\leq 2 n / 3$
- define $T(n)=$ maximum depth required for any size n formula
$-C_{1}, C_{0}, D$ all size $\leq 2 n / 3$

$$
T(n) \leq T(2 n / 3)+3
$$

$$
\text { implies } \mathrm{T}(\mathrm{n}) \leq \mathrm{O}(\log \mathrm{n})
$$

$$
\text { April 18, 2023 } \quad \text { CS151 Lecture } 5
$$

${ }^{43}$
43

Relation to other classes

- Clearly NC $\subseteq \mathbf{P}$
- recall $\mathbf{P} \equiv$ uniform poly-size circuits
- $\mathbf{N C}_{1} \subseteq \mathbf{L}$
- on input x, compose logspace algorithms for: - generating $\mathrm{C}_{|\times|}$
- converting to formula
- FVAL

Appil 18, 2023
CS151 Lecture 5 ${ }^{44}$
44

Relation to other classes

- $\mathrm{NL} \subseteq \mathrm{NC}_{2}: ~ \mathrm{~S}-\mathrm{T}-\mathrm{CONN} \in \mathrm{NC}_{2}$
- given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, vertices s, t
- A = adjacency matrix (with self-loops)
$-\left(A^{2}\right)_{i, j}=1$ iff path of length ≤ 2 from node i to node j
$-\left(A^{n}\right)_{i, j}=1$ iff path of length $\leq n$ from node i to node j
- compute with depth log n tree of Boolean matrix multiplications, output entry s, t
$-\log ^{2} n$ depth total
Apill $8,2023 \quad$ CS151 Lecture 5
45

NC VS. \mathbf{P}
- can every efficient algorithm be efficiently
parallelized?
NC $\stackrel{?}{=} \mathbf{P}$
- P-complete problems least-likely to be
parallelizable
- if P-complete problem is in NC, then $\mathbf{P}=\mathbf{N C}$
- Why?
we use logspace reductions to show problem
P-complete; L in NC
April 18,2023

46

NC vs. P

- can every uniform, poly-size Boolean circuit family be converted into a uniform, poly-size Boolean formula family?

$$
N C_{1} \stackrel{?}{=} P
$$

April 18,2023
CS151 Lecture 5
47

