
1

CS151
Complexity
Theory

Lecture 4
April 13, 2023

1

April 13, 2023

Ladner’s Theorem

• Assuming P ≠ NP, what does the world
(inside NP) look like?

NPC

P

NP:

NPC

P

NP:

CS151 Lecture 4 2

2

April 13, 2023

Ladner’s Theorem

Theorem (Ladner): If P ≠ NP, then there
exists L ∈ NP that is neither in P nor NP-
complete.

• Proof: “lazy diagonalization”
– deal with similar problem as in NTIME

Hierarchy proof

CS151 Lecture 4 3

3

April 13, 2023

Ladner’s Theorem

• Can enumerate (TMs deciding) all
languages in P.
– enumerate TMs so that each machine

appears infinitely often
– add clock to Mi so that it runs in at most ni

steps

CS151 Lecture 4 4

4

April 13, 2023

Ladner’s Theorem

• Can enumerate (TMs deciding) all NP-
complete languages.
– enumerate TMs fi computing all polynomial-

time functions
– machine Ni decides language SAT reduces to

via fi if fi is reduction, else SAT (details
omitted…)

CS151 Lecture 4 5

5

April 13, 2023

Ladner’s Theorem

• Our goal:
L ∈ NP
that is
neither in
P nor
NP-
complete

Mi

M0

inputs L

N0

Ni

: :

: :

CS151 Lecture 4 6

6

2

April 13, 2023

Ladner’s Theorem

• Top half, assuming P ≠ NP:

Mi

M0

SAT

: :

input x
input z

• focus on Mi

• for any x,
can always
find some z
≥ x on which
Mi and SAT
differ (why?)

CS151 Lecture 4 7

7

April 13, 2023

Ladner’s Theorem

• Bottom half, assuming P ≠ NP:

TRIV

N0

Ni

: :

input x input z
TRIV = Σ*

• focus on Ni

• for any x,
can always
find some z
≥ x on which
Ni and TRIV
differ (why?)

CS151 Lecture 4 8

8

April 13, 2023

Ladner’s Theorem

• Try to “merge”:

• on input x, either
– answer SAT(x)
– answer TRIV(x)

• if can decide which
one in P, L ∈ NP

SAT TRIV
Mi

M0

L

N0

Ni

: :

: :

. . .
≠

≠

≠

≠

CS151 Lecture 4 9

9

April 13, 2023

Ladner’s Theorem

• General scheme: f(n) slowly increasing
function

– f(|x|) even: answer SAT(x)
– f(|x|) odd: answer TRIV(x)

• notice choice only depends on length of
input… that’s OK

L . . .
f(|x|) 0 0 0 1 1 1 2 2 2 2 . . .

SAT

TRIV

CS151 Lecture 4 10

10

April 13, 2023

Ladner’s Theorem

• 1st attempt to define f(n)
• “eager f(n)”: increase at 1st opportunity
• Inductive definition: f(0) = 0; f(n) =

– if f(n-1) = 2i, trying to kill Mi

• if ∃ z < 1n s.t. Mi(z) ≠ SAT(z), then
f(n) = f(n-1) + 1; else f(n) = f(n-1)

– if f(n-1) = 2i+1, trying to kill Ni

• if ∃ z < 1n s.t. Ni(z) ≠ TRIV(z), then
f(n) = f(n-1) + 1; else f(n) = f(n-1)

CS151 Lecture 4 11

11

April 13, 2023

Ladner’s Theorem

• Problem: eager f(n) too difficult to compute
• on input of length n,

– look at all strings z of length < n
– compute SAT(z) or Ni(z) for each !

• Solution: “lazy” f(n)
– on input of length n, only run for 2n steps
– if enough time to see should increase (over f(n-1)), do

it; else, stay same
– (alternate proof: give explicit f(n) that grows slowly

enough…)
CS151 Lecture 4 12

12

3

April 13, 2023

Ladner’s Theorem

• Key: n eventually large enough to
notice completed previous stage

L
f 0 0 1 1 k k k

. . .

. . .

Mi

input x
input z < x

≠

suppose k = 2i

• I’m
sup-
posed to
ensure Mi
is killed
• I finally
have
enough
time to
check
input z
• I notice
z did the
job,
increase
f to k+1

k k

CS151 Lecture 4 13

13

April 13, 2023

Ladner’s Theorem

• Inductive definition of f(n)
– f(0) = 0
– f(n): for n steps compute f(0), f(1), f(2),…

L
f 0 0 1 1 k k k

. . .

.
. . .

input x,
|x| = n

got this far in n steps

CS151 Lecture 4 14

14

April 13, 2023

Ladner’s Theorem

– if k = 2i:
• for n steps try (lex order) to find z s.t.

SAT(z) ≠ Mi(z) and f(|z|) even
• if found, f(n) = f(n-1)+1 else f(n-1)

– if k = 2i + 1:
• for n steps try (lex order) to find z s.t.

TRIV(z) ≠ Ni(z) and f(|z|) odd
• if found, f(n) = f(n-1)+1 else f(n-1)

CS151 Lecture 4 15

15

April 13, 2023

Ladner’s Theorem

• Finishing up:
L = { x | x ∈ SAT if f(|x|) even,

x ∈ TRIV if f(|x|) odd }

• L ∈ NP since f(|x|) can be computed in
O(n) time

CS151 Lecture 4 16

16

April 13, 2023

Ladner’s Theorem

• suppose Mi decides L
– f gets stuck at 2i
– L ≡SAT for z : |z| > no

– implies SAT ∈ P. Contradiction.
• suppose Ni decides L

– f gets stuck at 2i+1
– L ≡TRIV for z : |z| > no

– implies L(Ni) ∈P. Contradiction.

• (last of diagonalization…)

CS151 Lecture 4 17

17

April 13, 2023

A puzzle

• cover up nodes with c colors
• promise: never color “arrow” same as “blank”
• determine which kind of tree in poly(n, c) steps?

.

depth
n

A puzzle:
two kinds
of trees

CS151 Lecture 4 18

18

4

April 13, 2023

A puzzle

.

depth
n

CS151 Lecture 4 19

19

April 13, 2023

A puzzle

.

depth
n

CS151 Lecture 4 20

20

April 13, 2023

Introduction
• Ideas

– depth-first-search; stop if see
– how many times may we see a given “arrow

color”?
• at most n+1

– pruning rule?
• if see a color > n+1 times, it can’t be an

arrow node; prune
– # nodes visited before know answer?

• at most c(n+2)

CS151 Lecture 4 21

21

April 13, 2023

Sparse languages and NP

• We often say NP-compete languages are
“hard”

• More accurate: NP-complete languages
are “expressive”
– lots of languages reduce to them

CS151 Lecture 4 22

22

April 13, 2023

Sparse languages and NP

• Sparse language: one that contains at
most poly(n) strings of length ≤ n

• not very expressive – can we show this
cannot be NP-complete (assuming P ≠ NP) ?
– yes: Mahaney ’82 (homework problem)

• Unary language: subset of 1* (at most n
strings of length ≤ n)

CS151 Lecture 4 23

23

April 13, 2023

Sparse languages and NP

Theorem (Berman ’78): if a unary language
is NP-complete then P = NP.

• Proof:
– let U ⊆ 1* be a unary language and assume

SAT ≤ U via reduction R
– φ(x1,x2,…,xn) instance of SAT

CS151 Lecture 4 24

24

5

April 13, 2023

Sparse languages and NP
– self-reduction tree for φ:

. . .

φ(x1,x2,…,xn)

φ(1,x2,…,xn)φ(0,x2,…,xn)

φ(0,0,…,0) φ(1,1,…,1)

...

satisfying assignment

CS151 Lecture 4 25

25

April 13, 2023

Sparse languages and NP
– applying reduction R:

. . .

R(φ(x1,x2,…,xn))

R(φ(1,x2,…,xn))R(φ(0,x2,…,xn))

R(φ(0,0,…,0)) R(φ(1,1,…,1))

...

satisfying assignment

CS151 Lecture 4 26

26

April 13, 2023

Sparse languages and NP

• on input of length m = |φ(x1,x2,…,xn)|, R
produces string of length ≤ p(m)

• R’s different outputs are “colors”
– 1 color for strings not in 1*

– at most p(m) other colors

• puzzle solution ⇒ can solve SAT in
poly(p(m)+1, n+1) = poly(m) time!

CS151 Lecture 4 27

27

April 13, 2023

Summary

• nondeterministic time classes:
NP, coNP, NEXP

• NTIME Hierarchy Theorem:
NP ≠ NEXP

• major open questions:
P = NP NP = coNP? ?

CS151 Lecture 4 28

28

April 13, 2023

Summary

• NP-“intermediate” problems (unless P = NP)

– technique: delayed diagonalization

• unary languages not NP-complete (unless P = NP)
– true for sparse languages as well (homework)

• complete problems:
– circuit SAT is NP-complete
– UNSAT is coNP-complete
– succinct circuit SAT is NEXP-complete

CS151 Lecture 4 29

29

April 13, 2023

Summary

EXP

PSPACE

P
L

NEXP

NP coNP

coNEXP

CS151 Lecture 4 30

30

6

April 13, 2023

Remainder of lecture

• nondeterminism applied to space

• reachability

• two surprises:

– Savitch’s Theorem

– Immerman/Szelepcsényi Theorem

CS151 Lecture 4 31

31

April 13, 2023

Nondeterministic space

• NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N → N

CS151 Lecture 4 32

32

April 13, 2023

Nondeterministic space

• Robust nondeterministic space classes:

NL = NSPACE(log n)

NPSPACE = ∪k NSPACE(nk)

CS151 Lecture 4 33

33

April 13, 2023

Reachability

• Recall: at most nk configurations of given
NTM M running in NSPACE(log n).

qstartx1x2x3…xn

qaccept qreject

x∈L

qaccept qreject

x∉L
• easy to
determine if C
yields C’ in one
step
• configuration
graph for M on
input x:

CS151 Lecture 4 34

34

April 13, 2023

Reachability

• Conclude: NL ⊆ P
– and NPSPACE ⊆ EXP

• S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path from s to t ?

Theorem: STCONN is NL-complete under
logspace reductions.

CS151 Lecture 4 35

35

April 13, 2023

Reachability

• Proof:
– in NL: guess path from s to t one node at a

time
– given L ∈ NL decided by NTM M construct

configuration graph for M on input x (can be
done in logspace)

– s = starting configuration; t = qaccept

CS151 Lecture 4 36

36

7

April 13, 2023

Two startling theorems

• Strongly believe P ≠ NP
• nondeterminism seems to add enormous

power
• for space: Savitch ‘70:

NPSPACE = PSPACE
and

NL ⊆ SPACE(log2n)

CS151 Lecture 4 37

37

April 13, 2023

Two startling theorems

• Strongly believe NP ≠ coNP
• seems impossible to convert existential

into universal

• for space: Immerman/Szelepscényi ’87/’88:

NL = coNL

CS151 Lecture 4 38

38

