

Ladner's Theorem

- Can enumerate (TMs deciding) all languages in **P**.
 - enumerate TMs so that each machine appears infinitely often
 - add clock to M_{i} so that it runs in at most $n^{i} \\ steps$

4

5

CS151 Lecture 4

Ladner's Theorem

- Can enumerate (TMs deciding) all **NP**-complete languages.
 - enumerate TMs f_i computing all polynomialtime functions
 - machine N_i decides language SAT reduces to via f_i if f_i is reduction, else SAT (details omitted...)

5

April 13, 2023 CS151 Lecture 4

4

April 13, 2023

Ladner's Theorem Ladner's Theorem • 1st attempt to define f(n) • "eager f(n)": increase at 1st opportunity • on input of length n, look at all strings z of length < n • Inductive definition: f(0) = 0; f(n) =- compute SAT(z) or N_i(z) for each ! - if f(n-1) = 2i, trying to kill M_i Solution: "lazy" f(n) • if $\exists z < 1^n$ s.t. $M_i(z) \neq SAT(z)$, then f(n) = f(n-1) + 1; else f(n) = f(n-1)- if f(n-1) = 2i+1, trying to kill N_i it: else. stav same • if $\exists z < 1^n$ s.t. $N_i(z) \neq TRIV(z)$, then f(n) = f(n-1) + 1; else f(n) = f(n-1)enough...) April 13, 2023 CS151 Lecture 4 11 April 13, 2023 CS151 Lecture 4

• Problem: eager f(n) too difficult to compute - on input of length n, only run for 2n steps - if enough time to see should increase (over f(n-1)), do

- (alternate proof: give explicit f(n) that grows slowly

12

Sparse languages and $\ensuremath{\mathsf{NP}}$

- We often say NP-compete languages are "hard"
- More accurate: **NP**-complete languages are "expressive"

CS151 Lecture 4

 $-\operatorname{lots}$ of languages reduce to them

April 13, 2023

22

Sparse languages and NP

- Sparse language: one that contains at most poly(n) strings of length ≤ n
- not very expressive can we show this cannot be NP-complete (assuming P ≠ NP) ?
 yes: Mahaney '82 (homework problem)
- Unary language: subset of 1* (at most n strings of length ≤ n)

CS151 Lecture 4

22

April 13, 2023

24

	Reachability	
Conclude: _ and NPSP	NL ⊆ P ACE ⊆ EXP	
 S-T-Connectivity (STCONN): given directed graph G = (V, E) and nodes s, t, is there a path from s to t ? 		
<u>Theorem</u> : STCONN is NL -complete under logspace reductions.		
April 13, 2023	CS151 Lecture 4	35
:		

Two startling theorems • Strongly believe NP ≠ coNP · seems impossible to convert existential • for space: Immerman/Szelepscényi '87/'88: 38