

1

Ladner's Theorem

- Can enumerate (TMs deciding) all languages in \mathbf{P}.
- enumerate TMs so that each machine appears infinitely often
- add clock to M_{i} so that it runs in at most n^{i} steps

April 13, 2023
CS151 Lecture 4
4

| Ladner's Theorem |
| :--- | :--- |
| - Can enumerate (TMs deciding) all |
| languages in P. |
| - enumerate TMs so that each machine |
| appears infinitely often |
| - add clock to M_{i} so that it runs in at most n^{i} |
| steps |\quad| April 13,2023 |
| :---: |

Ladner's Theorem

- Assuming $\mathbf{P} \neq \mathbf{N P}$, what does the world (inside NP) look like?

April 13, 2023
CS151 Lecture 4
2

Ladner's Theorem

- Can enumerate (TMs deciding) all NPcomplete languages.
- enumerate TMs f_{i} computing all polynomialtime functions
- machine N_{i} decides language SAT reduces to via f_{i} if f_{i} is reduction, else SAT (details omitted...)

[^0]CS151 Lecture 4
${ }^{5}$
5

Ladner's Theorem
- Can enumerate (TMs deciding) all NP-
complete languages.
- enumerate TMs f_{i} computing all polynomial-
time functions
- machine N_{i} decides language SAT reduces to
via f_{i} if f_{i} is reduction, else SAT (details
omitted...)
:---:

Ladner's Theorem

Theorem (Ladner): If $\mathbf{P} \neq \mathbf{N P}$, then there exists $L \in \mathbf{N P}$ that is neither in \mathbf{P} nor NPcomplete.

- Proof: "lazy diagonalization"
- deal with similar problem as in NTIME Hierarchy proof

CS151 Lecture 4

3

April 13,2023

6

7

Ladner's Theorem

- Bottom half, assuming $\mathbf{P} \neq \mathrm{NP}$:
- focus on N_{i}
- for any x ,
can always
find some z
$\geq x$ on which
N_{i} and TRIV
differ (why?)

April 13, 2023

8

Ladner's Theorem

- $1^{\text {st }}$ attempt to define $\mathrm{f}(\mathrm{n})$
- "eager $f(n)$ ": increase at $1^{\text {st }}$ opportunity
- Inductive definition: $f(0)=0 ; f(n)=$
- if $f(n-1)=2 i$, trying to kill M_{i}
- if $\exists \mathrm{z}<1^{\mathrm{n}}$ s.t. $\mathrm{M}_{\mathrm{i}}(\mathrm{z}) \neq \operatorname{SAT}(\mathrm{z})$, then
$f(n)=f(n-1)+1$; else $f(n)=f(n-1)$
- if $f(n-1)=2 i+1$, trying to kill N_{i}
- if $\exists z<1^{n}$ s.t. $N_{i}(z) \neq \operatorname{TRIV}(z)$, then $f(n)=f(n-1)+1$; else $f(n)=f(n-1)$

April 13, 2023
CS151 Lecture 4 ${ }^{11}$

Ladner's Theorem

- Try to "merge"

- on input x, either - answer SAT(x) - answer $\operatorname{TRIV}(x)$
- if can decide which one in $\mathbf{P}, \mathrm{L} \in \mathbf{N P}$

April 13,2023

9

Ladner's Theorem

- General scheme: $f(n)$ slowly increasing function
L

- $\mathrm{f}(|\mathrm{x}|$) odd: answer $\operatorname{TRIV}(\mathrm{x})$
- notice choice only depends on length of input... that's OK

April 13, 2023
CS151 Lecture 4
10

11

Ladner's Theorem

- Problem: eager $\mathrm{f}(\mathrm{n})$ too difficult to compute
- on input of length n
- look at all strings z of length < n
- compute SAT(z) or $N_{i}(z)$ for each!
- Solution: "lazy" f(n)
- on input of length n, only run for 2 n steps
- if enough time to see should increase (over $f(n-1)$), do it; else, stay same
- (alternate proof: give explicit $f(n)$ that grows slowly enough...)
Apill 13,2023
CS151 Lecture 4
12

13

Ladner's Theorem

- Inductive definition of $f(n)$
$-f(0)=0$
$-f(n)$: for n steps compute $f(0), f(1), f(2), \ldots$

Apili 13, 2023
CS151 Lecture 4
14

Ladner's Theorem

- suppose M_{i} decides L
- f gets stuck at 2 i
$-\mathrm{L} \equiv$ SAT for $\mathrm{z}:|\mathrm{z}|>\mathrm{n}_{0}$
- implies SAT $\in P$. Contradiction.
- suppose N_{i} decides L
- f gets stuck at 2i+1
$-\mathrm{L} \equiv$ TRIV for $\mathrm{z}:|\mathrm{z}|>\mathrm{n}_{\mathrm{o}}$
- implies $L\left(N_{i}\right) \in P$. Contradiction.
- (last of diagonalization...)

April 13, $2023 \quad$ CS151 Lecture 4 ${ }^{17}$
17

Ladner's Theorem

$$
- \text { if } \mathrm{k}=2 \mathrm{i}:
$$

- for n steps try (lex order) to find z s.t.

SAT $(z) \neq M_{i}(z)$ and $f(|z|)$ even

- if found, $f(n)=f(n-1)+1$ else $f(n-1)$
- if $k=2 i+1$:
- for n steps try (lex order) to find z s.t.
$\operatorname{TRIV}(z) \neq N_{i}(z)$ and $f(|z|)$ odd
- if found, $f(n)=f(n-1)+1$ else $f(n-1)$

April 13, 2023
CS151 Lecture 4

15

Ladner's Theorem
- if $k=2 i$:
• for n steps try (lex order) to find z s.t.
SAT $(z) \neq M_{i}(z)$ and $f(\|z\|)$ even
• if found, $f(n)=f(n-1)+1$ else $f(n-1)$
- if $k=2 i+1$:
• for n steps try $($ lex order $)$ to find z s.t.
TRIV $(z) \neq N_{i}(z)$ and $f(\|z\|)$ odd
• if found, $f(n)=f(n-1)+1$ else $f(n-1)$
cs151 Lecture 4

16

- $L \in N P$ since $f(|x|)$ can be computed in $\mathrm{O}(\mathrm{n})$ time

Apili 13, 2023
CS151 Lecture 4
${ }^{16}$
-

Ladner's Theorem

Finishing up:

$$
\begin{aligned}
L= & \{x \mid x \in \text { SAT if } f(|x|) \text { even, } \\
& x \in \text { TRIV if } f(|x|) \text { odd }\}
\end{aligned}
$$

- cover up nodes with c colors
- promise: never color "arrow" same as "blank"
- determine which kind of tree in poly(n, c) steps?

Apili 13, 2023
CS151 Lecture 4
18

19

20

Introduction

- Ideas
- depth-first-search; stop if see
- how many times may we see a given "arrow color"?
- at most n+1
- pruning rule?
- if see a color > n+1 times, it can't be an arrow node; prune
- \# nodes visited before know answer? - at most c(n+2)

April 13,2023
21

Sparse languages and NP

- We often say NP-compete languages are "hard"
- More accurate: NP-complete languages are "expressive"
- lots of languages reduce to them

Appil 13, 2023
CS151 Lecture 4
${ }^{22}$
22

Sparse languages and NP

- Sparse language: one that contains at most poly(n) strings of length $\leq \mathrm{n}$
- not very expressive - can we show this cannot be NP-complete (assuming $\mathbf{P} \neq \mathbf{N P}$) ? - yes: Mahaney '82 (homework problem)
- Unary language: subset of 1^{*} (at most n strings of length $\leq n$)

April 13,2023
CS151 Leecture 4
${ }^{23}$
23

Sparse languages and NP

Theorem (Berman '78): if a unary language is $\mathbf{N P}$-complete then $\mathbf{P}=\mathbf{N P}$.

- Proof:
- let $U \subseteq 1^{*}$ be a unary language and assume SAT $\leq U$ via reduction R
$-\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ instance of SAT

Apili 13,2023
CS151 Lecture 4
24

25

Sparse languages and NP

- applying reduction R :

 satisfying assignment

Apili 13, 2023
CS151 Lecture 4
26

Sparse languages and NP

- on input of length $m=\left|\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|, R$ produces string of length $\leq p(m)$
- R's different outputs are "colors"
- 1 color for strings not in 1^{*}
- at most p(m) other colors
- puzzle solution \Rightarrow can solve SAT in poly $(\mathrm{p}(\mathrm{m})+1, \mathrm{n}+1)=$ poly (m) time!

Appil 13, 2023
CS151 Lecture 4
27

Summary

- nondeterministic time classes:
NP, coNP, NEXP
- NTIME Hierarchy Theorem:

NP \neq NEXP

- major open questions:

$$
\mathrm{P} \stackrel{?}{=} \mathrm{NP} \quad \mathrm{NP} \stackrel{?}{=} \operatorname{coNP}
$$

Appil 13,2023
CS151 Lecture 4
28

Summary

- NP-"intermediate" problems (unless P = NP) - technique: delayed diagonalization
- unary languages not NP-complete (unless $\mathbf{P}=\mathbf{N P}$)
- true for sparse languages as well (homework)
- complete problems:
- circuit SAT is NP-complete
- UNSAT is coNP-complete
- succinct circuit SAT is NEXP-complete

April 13,2023
CS151 Lecture 4
29
\square
29

30
Remainder of lecture

- nondeterminism applied to space
- reachability
- two surprises:
- Savitch's Theorem
- Immerman/Szelepcsényi Theorem
April 13,2023

31

Nondeterministic space

- $\operatorname{NSPACE}(\mathrm{f}(\mathrm{n}))=$ languages decidable by a multi-tape NTM that touches at most $f(n)$ squares of its work tapes along any computation path, where n is the input length, and $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$

Appil 13,2023 CS151 Lecture 4 ${ }^{32}$

32

Nondeterministic space

- Robust nondeterministic space classes:
NL = NSPACE(log n)

NPSPACE $=U_{k} \operatorname{NSPACE}\left(\mathrm{n}^{\mathrm{k}}\right)$

Appil 13, 2023
CS151 Lecture 4
${ }^{33}$
33

34

Reachability

- Conclude: $\mathrm{NL} \subseteq \mathrm{P}$
- and NPSPACE \subseteq EXP
- S-T-Connectivity (STCONN): given directed graph $G=(V, E)$ and nodes s, t, is there a path from s to t ?
Theorem: STCONN is NL-complete under logspace reductions.

April 13,2023
CS151 Lecture 4
${ }^{35}$
35

Reachability

- Proof:
- in NL: guess path from s to t one node at a time
- given L \in NL decided by NTM M construct configuration graph for M on input x (can be done in logspace)
$-s=$ starting configuration; $t=q_{\text {accept }}$

Apili 13, 2023
CS151 Lecture 4
${ }^{36}$
36

Two startling theorems

- Strongly believe $\mathbf{P} \neq \mathbf{N P}$
- nondeterminism seems to add enormous power
- for space: Savitch '70:

NPSPACE = PSPACE
and
$N L \subseteq S P A C E\left(\log ^{2} n\right)$

CS151 Lecture 4
37

Two startling theorems

- Strongly believe NP = coNP
- seems impossible to convert existential into universal
- for space: Immerman/Szelepscényi ' $87 /$ ' 88 :
$\mathrm{NL}=\mathrm{coNL}$

April 13, 2023
38

[^0]: April 13,2023

