

Turing Machines

Amazing fact: there exist (natural)
 undecidable problems

HALT = { (M, x) : M halts on input x }

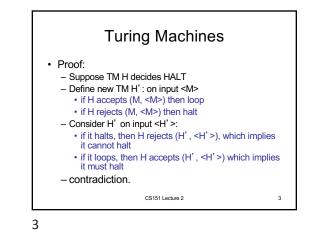
CS151 Lecture 2

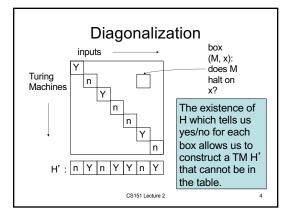
2

• Theorem: HALT is undecidable.

2

5





4

Turing Machines

- · Back to complexity classes:
 - **TIME**(f(n)) = languages decidable by a multitape TM in at most f(n) steps, where n is the input length, and $f: N \rightarrow N$
- SPACE(f(n)) = languages decidable by a multi-tape TM that touches at most f(n) squares of its work tapes, where n is the input length, and f :N →N

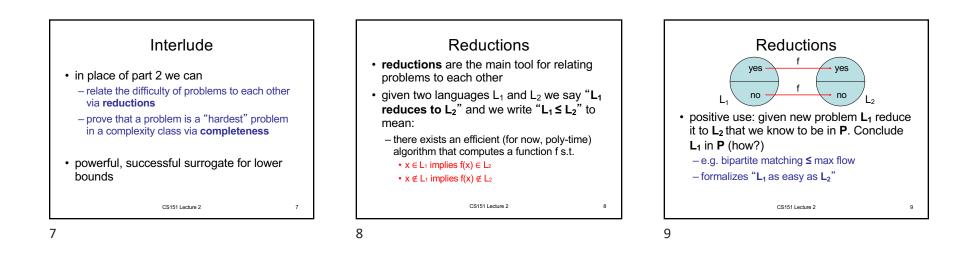
Note:
$$\mathbf{P} = \bigcup_{k \ge 1} \mathsf{TIME}(\mathbf{n}^k)$$

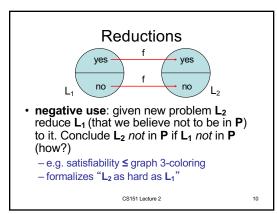
CS151 Lecture 2

Interlude

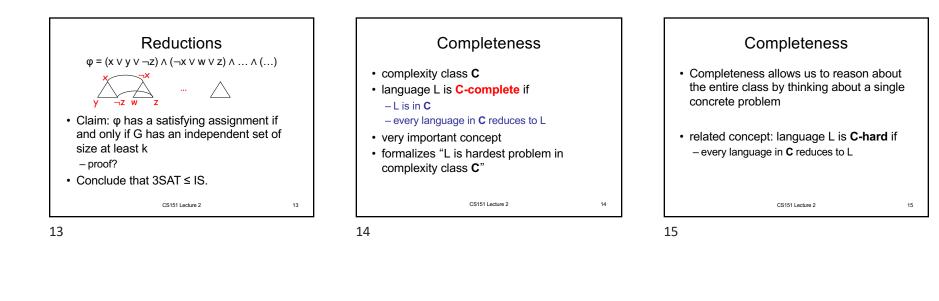
- In an ideal world, given language L
 state an algorithm deciding L
 prove that no algorithm does better
- · we are pretty good at part 1
- we are currently **completely helpless** when it comes to part 2, for most problems that we care about

CS151 Lecture 2









- May ask: how to show every language in C reduces to L?
 - in practice, shown by reducing known Ccomplete problem to L
- often not hard to find "1st" C-complete language, but it might not be "natural"

CS151 Lecture 2

16

17

Completeness .- Example: MP = the set of languages L where $L = \{x : \exists y, |y| \le |x|^k, (x, y) \in R\}$ and R is a language in P. MP-complete language "bounded hating": $BH = \{(M, x, 1^k, 1^m) : \exists y, |y| \le |x|^k \text{ s.t. } M$ accepts (x, y) in at most m steps $\}$.- Challenge is to find natural complete problem .- Cook 71 : 3-SAT NP-complete Summary

- problems

 function, decision
 - language = set of strings
- complexity class = set of languages
- efficient computation identified with efficient computation on Turing Machine
 – single-tape, multi-tape
 - diagonalization technique: HALT undecidable
- TIME and SPACE classes
- reductions

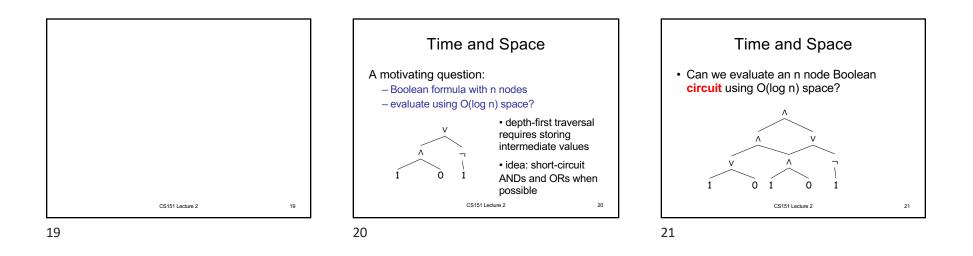
18

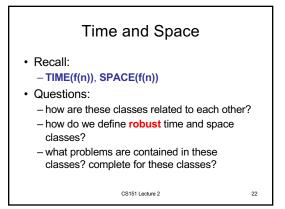
• C-completeness, C-hardness

CS151 Lecture 2

16

3



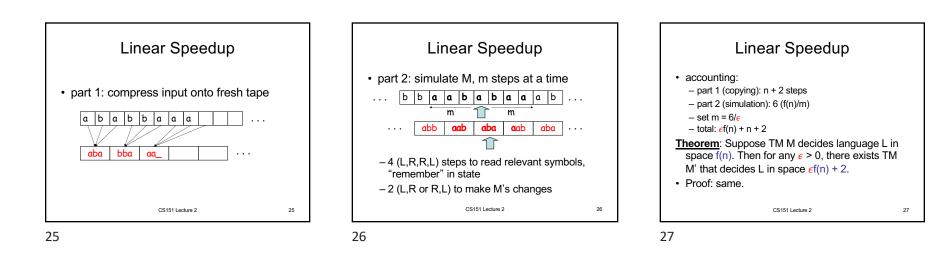


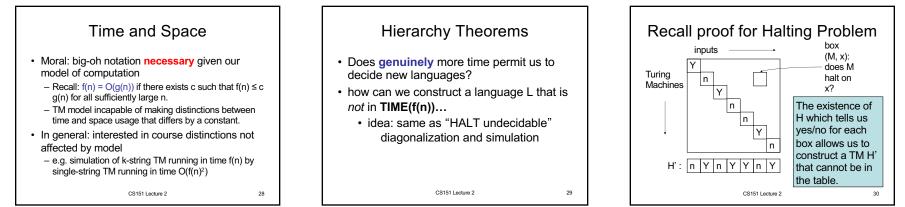
- Why big-oh? Linear Speedup Theorem
- Hierarchy Theorems
- Robust Time and Space Classes
- Relationships between classes
- Some complete problems

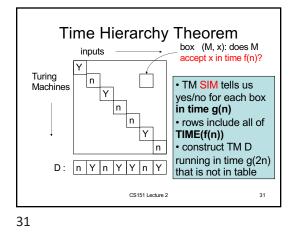
CS151 Lecture 2

23

Linear Speedup Theorem: Suppose TM M decides language L in time f(n). Then for any $\epsilon > 0$, there exists TM M' that decides L in time $\epsilon f(n) + n + 2$. • Proof: • simple idea: increase "word length" • M' will have • one more tape than M • m-tuples of symbols of M $\sum_{rew = \sum old \cup \sum old^m}$ • many more states 24







Time Hierarchy Theorem Theorem (Time Hierarchy Theorem): For

<u>Ineorem</u> (Time Hierarchy Theorem): For every proper complexity function $f(n) \ge n$: TIME $(f(n)) \subsetneq TIME(f(2n)^3)$.

more on "proper complexity functions" later...

CS151 Lecture 2

32

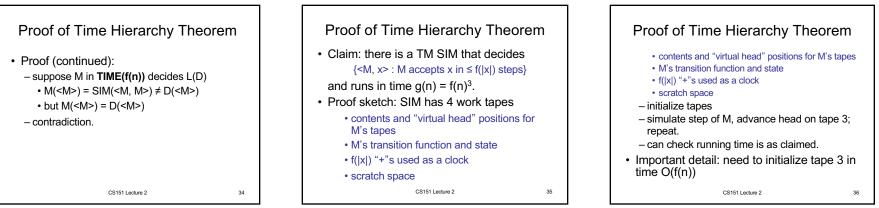
Proof of Time Hierarchy Theorem

Proof:
SIM is TM deciding language
{<M, x> : M accepts x in ≤ f(|x|) steps }
Claim: SIM runs in time g(n) = f(n)³.
define new TM D: on input <M>
if SIM accepts <M, M>, reject
if SIM rejects <M, M>, accept
D runs in time g(2n)

33

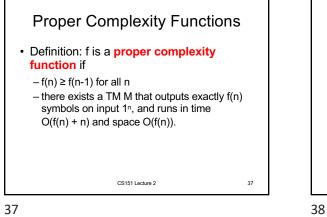
33

32



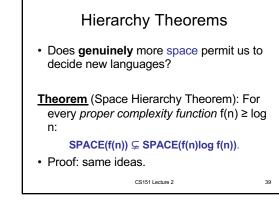
34

35



- includes all reasonable functions we will work with
 - $-\log n, \sqrt{n}, n^2, 2^n, n!, \dots$
 - if f and g are proper then f + g, fg, f(g), f^g, 2^g are all proper
- can mostly ignore, but be aware it is a genuine concern:
- <u>Theorem</u>: ∃ non-proper f such that TIME(f(n)) = TIME(2^{f(n)}).

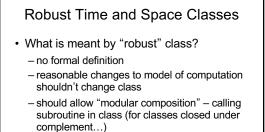
CS151 Lecture 2



39

38

41



CS151 Lecture 2

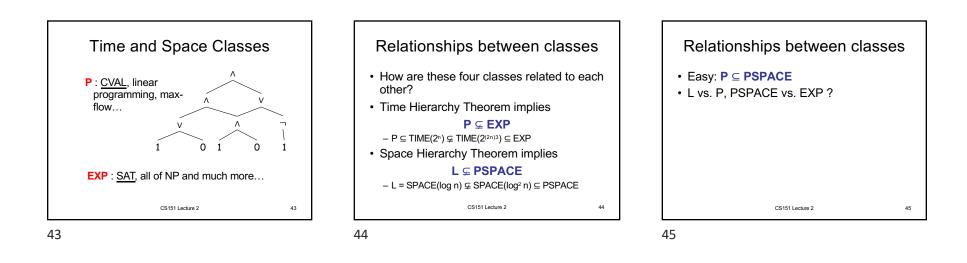
Robust Time and Space Classes • Robust time and space classes: L = SPACE(log n) $PSPACE = \cup_k SPACE(n^k)$ $P = \cup_k TIME(n^k)$ $EXP = \cup_k TIME(2^{n^k})$ CS151 Lecture 2

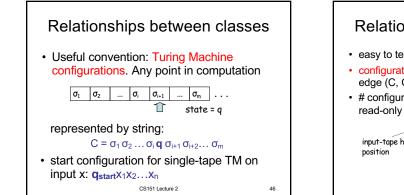
Time and Space Classes	
• Problems in these classes: $_{\wedge}$	
L : <u>FVAL</u> , integer multiplication, most reductions	
auckland san control davis francisco oakland	
CS151 Lecture 2	42

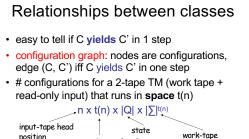
40

41

40







work-tape head

CS151 Lecture 2

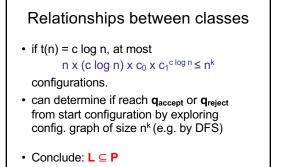
position

47

contents

47

48



46

)

CS151 Lecture 2

