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Natural Proofs
• Razborov and Rudich defined the following 
“natural” format for circuit lower bounds:
– identify property P of functions f:{0,1}* → {0,1} 
– P = ∪n Pn is a natural property if:

• (useful) ∀n fn ∈ Pn implies f does not have poly-
size circuits    [i.e. fn ∈ Pn implies ckt size ≥ s(n) >> poly(n)]

• (constructive) can decide “fn ∈ Pn?” in poly time 
given the truth table of fn

• (large) at least (½)O(n) fraction of all 22n functions 
on n bits are in Pn

– show some function family g = {gn} is in Pn
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Natural Proofs

• all known circuit lower bound techniques 
are natural for a suitably parameterized 
version of the definition

Theorem (RR): if there is a 2n𝜖-OWF, then 
there is no natural property P. 
– factoring believed to be 2n𝜖 -OWF
– general version also rules out natural 

properties useful for proving many other 
separations, under similar cryptographic 
assumptions
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Natural Proofs

• Proof:
– main idea: natural property Pn can efficiently

distinguish 
pseudorandom functions

from 
truly random functions

– but cryptographic assumption implies 
existence of pseudorandom functions for 
which this is impossible
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Proof (continued)

• Recall: assuming One-Way-Permutations 
fk:{0,1}k → {0,1}k

that are not invertible by 2k𝜖 size circuits

• we constructed PRG G:{0,1}k → {0,1}2k

– no circuit C of size s = 2k𝛿 for which
|Prx[C(G(x)) = 1] – Prz[C(z) = 1]| > 1/s

(BMY construction with slightly modified parameters)
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Proof (continued)

• Think of G as G:{0,1}k → {0,1}k × {0,1}k

G(x) = (y1, y2)

• Graphically:

G

x

y1 y2
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Proof (continued)

• A function F:{0,1}k → {0,1}2n

(set n = k𝛼) x

G G

G

G

G G

G

G G G G G G G G

height 
n-log k

Given x, i, 
can compute 
i-th output bit  

in time 
n⋅poly(k)

each x, 
defines a 
poly-time 

computable 
function fx
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Proof (continued)

• fx in poly-time ⇒ for all x: fx∉ Pn (useful)
• Prg[g ∈ Pn] ≥ (1/2)O(n) (large)
• constructive: exists circuit T:{0,1}2n → {0,1} 

of size 2O(n) for which
|Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n)

(useful) ∀n fn ∈ Pn ⇒f does not have poly-size circuits
(constructive) “fn ∈ Pn?” in poly time given truth table of fn
(large) at least (½)O(n) fraction of all 22n fns. on n-bits in Pn
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D0: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D1: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D2: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D3: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D4: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D5: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D6: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D7: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

• |Prx[T(fx) = 1] – Prg[T(g) = 1]| ≥ (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

distribution D2n/k-1: pick 
roots of red subtrees  
independently from 
{0,1}k

…
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Proof (continued)

– For some i: 
|Pr[T(Di) = 1] - Pr[T(Di-1) = 1]| ≥ (1/2)O(n)/2n = (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

…
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Proof (continued)

– For some i: 
|Pr[T(Di) = 1] - Pr[T(Di-1) = 1]| ≥ (1/2)O(n)/2n = (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

…

fix values at 
roots of all 
other subtrees 
to preserve 
difference
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Proof (continued)

– For some i: 
|Pr[T( Di’ ) = 1] - Pr[T( Di-1’ ) = 1]| ≥ (1/2)O(n)/2n = (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

…

Di’: distribution 
Di after fixing 
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Proof (continued)

– For some i: 
|Pr[T( Di’ ) = 1] - Pr[T( Di-1’ ) = 1]| ≥ (1/2)O(n)/2n = (1/2)O(n) 

x

G G

G

G

G G

G

G G G G G G G G

…

Di-1’: distribution 
Di-1 after fixing 
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Proof (continued)
|Pr[T( Di’ ) = 1] - Pr[T( Di-1’ ) = 1]| ≥ (1/2)O(n)/2n = (1/2)O(n) 

– C(y1,y2)=T(                                                         )
|Prx[C(G(x)) = 1] - Pry1, y2[C(y1, y2) = 1]| ≥ (1/2)O(n)

y1 y2

T( Di’ ) T( Di-1’ )

G G

G

G

G G G G G G G G

!
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Proof (continued)

– recall: no circuit C of size s = 2k𝛿for which:
|Prx[C(G(x)) = 1] – Pry1, y2[C(y1, y2) = 1]| > 1/s

– we have C of size 2O(n) for which:
|Prx[C(G(x)) = 1] - Pry1, y2[C(y1, y2) = 1]| ≥ (1/2)O(n)

– with n = k𝛼, 𝛼 arbitrary constant
– set 𝛼 such that 2O(n) < s
– contradiction.
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Natural Proofs
• To prove circuit lower bounds, we must 

either:
– Violate largeness: seize upon an incredibly 

specific feature of hard functions (one not 
possessed by a random function ! )

– Violate constructivity: identify a feature of hard 
functions that cannot be computed efficiently 
from the truth table

• no “non-natural property” known for all but 
the very weakest models…  
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“We do not conclude that researchers should give 
up on proving serious lower bounds. Quite the 
contrary, by classifying a large number of
techniques that are unable to do the job, we 
hope to focus research in a more fruitful 
direction. Pessimism will only be warranted if a 
long period of time passes without the discovery 
of a non-naturalizing lower bound proof.”

Rudich and Razborov
1994 
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“We do not conclude that researchers should give 
up on proving serious lower bounds. Quite the 
contrary, by classifying a large number of
techniques that are unable to do the job, we 
hope to focus research in a more fruitful 
direction. Pessimism will only be warranted if a 
long period of time passes without the discovery 
of a non-naturalizing lower bound proof.”
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“We do not conclude that researchers should give 
up on proving serious lower bounds. Quite the 
contrary, by classifying a large number of
techniques that are unable to do the job, we 
hope to focus research in a more fruitful 
direction. Pessimism will only be warranted if a 
long period of time passes without the discovery 
of a non-naturalizing lower bound proof.”

Rudich and Razborov
1994 
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Moral

• To resolve central questions:
– avoid relativizing arguments

• use PCP theorem and related results
• focus on circuits, etc…

– avoid constructive arguments
– avoid arguments that yield lower bounds for 

random functions
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Course 
Summary
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Course summary

• Time and space
– hierarchy theorems
– FVAL in L
– CVAL P-complete
– QSAT PSPACE-complete
– succinct CVAL EXP-complete
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Course summary

• Non-determinism
– NTIME hierarchy theorem
– “NP-intermediate” problems (Ladner’s Theorem)
– unary languages (likely) not NP-complete
– Savitch’s Theorem
– Immerman-Szelepcsényi Theorem
Problem sets:
– sparse languages (likely) not NP-complete
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Course summary

• Non-uniformity
– formula lower bound (Andreev, Hastad)
– monotone circuit lower bound (Razborov)

Problem sets:
– Barrington’s Theorem
– formula lower bound for parity
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Course summary

• Randomness
– polynomial identity testing + Schwartz-Zippel
– unique-SAT (Valiant-Vazirani Theorem)
– Blum-Micali-Yao PRG
– Nisan-Wigderson PRG
– worst-case hardness ⇒average-case hardness
– Trevisan extractor

Problem sets:
– Goldreich-Levin hard bit
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Course summary

• Alternation
– QSATi complete for levels of the PH
– Karp-Lipton theorem
– BPP in PH 

Problem sets:
– approximate counting + sampling with an NP-oracle
– VC-dimension is Σ3-complete
– the class S2

P (final)
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Course summary

• Counting
– #matching is #P-complete

Problem sets:
– permanent is #P-complete
– Toda’s theorem: PH ⊆ P#P
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Course summary

• Interaction
– IP = PSPACE 
– GI in NP ∩ coAM
– using NW PRG for MA, variant for AM
– hardness of approximation , PCPs
– elements of the PCP theorem
Problem sets:
– BLR linearity test
– Clique hard to approximate to within N𝜖
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Course summary

• Barriers to progress
– oracles rule out relativizing proofs
– “natural proofs” rule out many circuit lower 

bound techniques
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Course summary

• Time and space L, P, PSPACE, EXP
• Non-determinism NL, NP, coNP, NEXP
• Non-uniformity NC, P/poly
• Randomness RL, ZPP, RP, coRP, BPP
• Alternation PH, PSPACE
• Counting #P
• Interaction IP, MA, AM, PCP[log n, 1]
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The big picture

• All classes on previous slide are probably 
distinct, except:
– P, ZPP, RP, coRP, BPP (probably all equal)
– L, RL (probably all equal; NL?)
– NP, MA, AM (probably all equal)
– IP = PSPACE
– PCP[log n, 1] = NP

• Only real separations we know separate classes 
delimiting same resource:
– e.g. L ≠ PSPACE, NP ≠ NEXP
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The big picture

Remember: 

possible explanation for failure to prove 
conjectured separations…

…is that they are false 
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The big picture

• Important techniques/ideas:
– simulation and diagonalization
– reductions and completeness
– self-reducibility
– encoding information using low-degree 

polynomials
– randomness
– others…
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The big picture

• I hope you take away:
– an ability to extract the essential features of a 

problem that make it hard/easy…
– knowledge and tools to connect

computational problems you encounter with 
larger questions in complexity

– background needed to understand current 
research in this area
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The big picture

– background to contribute to current research 
in this area
• many open problems
• young field
• try your hand…
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