

1

Natural Proofs

- Razborov and Rudich defined the following "natural" format for circuit lower bounds:
- identify property \mathbf{P} of functions $f:\{0,1\}^{*} \rightarrow\{0,1\}$
$-\underline{\mathbf{P}}=U_{n} \underline{P}_{n}$ is a natural property if:
- (useful) $\forall n f_{n} \in \underline{P}_{n}$ implies f does not have polysize circuits $\quad\left[i . e . f_{n} \in\right.$ P. implies ckt size $\geq s(n) \gg$ poly $\left.(n)\right]$ - (constructive) can decide " $f_{n} \in \mathbf{P}_{n}$?" in poly time given the truth table of f_{n}
- (large) at least $(1 / 2)^{\circ(n)}$ fraction of all $2^{2^{n}}$ functions on n bits are in \mathbf{P}
- show some function family $\mathrm{g}=\left\{\mathrm{g}_{\mathrm{n}}\right\}$ is in $\underline{\mathbf{P}}_{\mathrm{n}}$

June 1, 2023
CS151 Lecture 18
2

Natural Proofs

- Proof:
- main idea: natural property $\underline{\mathbf{P}}_{\mathrm{n}}$ can efficiently distinguish
pseudorandom functions
from
truly random functions
- but cryptographic assumption implies existence of pseudorandom functions for which this is impossible

June 1, 2023
CS151 Lecture 18

Proof (continued)

- Recall: assuming One-Way-Permutations

$$
\mathrm{f}_{\mathrm{k}}:\{0,1\}^{\mathrm{k}} \rightarrow\{0,1\}^{\mathrm{k}}
$$

that are not invertible by $2^{k \epsilon}$ size circuits

- we constructed PRG G: $\{0,1\}^{\mathrm{k}} \rightarrow\{0,1\}^{2 \mathrm{k}}$ - no circuit C of size $\mathrm{s}=2 \mathrm{k}^{\delta}$ for which $\left|\operatorname{Pr}_{x}[C(G(x))=1]-\operatorname{Pr}_{z}[C(z)=1]\right|>1 / s$ (BMY construction with slightly modified parameters)

[^0]CS151 Leture 18 ${ }^{5}$

Natural Proofs

- all known circuit lower bound techniques are natural for a suitably parameterized version of the definition
Theorem (RR): if there is a $2^{n^{\epsilon}}-O W F$, then there is no natural property \underline{P}.
- factoring believed to be $2^{n \epsilon}-$ OWF
- general version also rules out natural properties useful for proving many other separations, under similar cryptographic assumptions

June 1, 2023
CS151 Lecture 18

3

Proof (continued)

- Think of G as G: $\{0,1\}^{\mathrm{k}} \rightarrow\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{k}}$

$$
\mathrm{G}(\mathrm{x})=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)
$$

- Graphically:

June 1, 2023
CS151 Lecture 18
6

7

Proof (continued)

(useful) $\forall n f_{n} \in \underline{P}_{n} \Rightarrow f$ does not have poly-size circuits (constructive) " $\mathrm{f}_{n} \in \mathbf{P}_{n}$?" in poly time given truth table of f_{n} (large) at least $(1 / 2)^{0(n)}$ fraction of all $2^{2^{n}}$ fns. on n-bits in $\underline{\mathbf{P}}^{n}$

- f_{x} in poly-time \Rightarrow for all $x: f_{x} \notin \underline{P}_{n}$ (useful)
- $\operatorname{Pr}_{g}\left[g \in \underline{P}_{n}\right] \geq(1 / 2)^{O(n)}$ (large)
- constructive: exists circuit $T:\{0,1\}^{2^{n}} \rightarrow\{0,1\}$ of size $2^{0(n)}$ for which
$\left|\operatorname{Pr}_{\mathrm{x}}\left[\mathrm{T}\left(\mathrm{f}_{\mathrm{x}}\right)=1\right]-\operatorname{Pr}_{\mathrm{g}}[\mathrm{T}(\mathrm{g})=1]\right| \geq(1 / 2)^{\mathrm{O}(\mathrm{n})}$
June 1, 2023
CS155 Lecture 18 8

8

Proof (continued)

- $\left|\mathrm{Pr}_{x}\left[T\left(\mathrm{f}_{\mathrm{x}}\right)=1\right]-\operatorname{Pr}_{g}[T(\mathrm{~g})=1]\right| \geq(1 / 2)^{\mathrm{o}(\mathrm{n})}$
distribution $D_{0}:$ pick
roots of red subtrees x
independently from

9

10

Proof (continued)

- $\left|\operatorname{Pr}_{x}\left[T\left(f_{x}\right)=1\right]-\operatorname{Pr}_{g}[T(g)=1]\right| \geq(1 / 2)^{(n)}$

Proof (continued)

- $\left|\operatorname{Pr}_{x}\left[T\left(f_{x}\right)=1\right]-\operatorname{Pr}_{g}[T(g)=1]\right| \geq(1 / 2)^{0(n)}$
distribution D_{3} : pick roots of red subtrees independently from $\{0,1\}^{k}$

June 1, 2023 ${ }^{12}$

12

13

14

Proof (continued)

- $\left|\operatorname{Pr}_{x}\left[T\left(f_{x}\right)=1\right]-\operatorname{Pr}_{g}[T(g)=1]\right| \geq(1 / 2)^{0(n)}$
distribution D_{6} : pick
roots of red subtrees $\{0,1\}^{k}$

15

16

Proof (continued)

- $\left|\operatorname{Pr}_{x}\left[T\left(f_{x}\right)=1\right]-\operatorname{Pr}_{g}[T(g)=1]\right| \geq(1 / 2)^{0(n)}$ Proof (continued)
- For some i:
$\left|\operatorname{Pr}\left[T\left(D_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{i-1}\right)=1\right]\right| \geq(1 / 2)^{0(n) / 2} 2^{n}=(1 / 2)^{0(n)}$

18

19

20

Proof (continued)

- For some i:
$\left|\operatorname{Pr}\left[T\left(D_{i}^{\prime}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{i-1}{ }^{\prime}\right)=1\right]\right| \geq(1 / 2)^{(n)} / 2^{n}=(1 / 2)^{o(n)}$

21

22

Proof (continued)

- recall: no circuit C of size $s=2^{k \delta}$ for which: $\left|\operatorname{Pr}_{\mathrm{x}}[\mathrm{C}(\mathrm{G}(\mathrm{x}))=1]-\operatorname{Pr}_{\mathrm{y}_{1}, \mathrm{y}_{2}}\left[\mathrm{C}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=1\right]\right|>1 / \mathrm{s}$
- we have C of size $2^{0(n)}$ for which: $\left|\operatorname{Pr}_{x}[C(G(x))=1]-\operatorname{Pr}_{y_{1}, y_{2}}\left[C\left(y_{1}, y_{2}\right)=1\right]\right| \geq(1 / 2)^{\circ(n)}$
- with $\mathrm{n}=\mathrm{k}^{\alpha}, \alpha$ arbitrary constant
- set α such that $2^{\circ(n)}<$ s
- contradiction.

June 1, $2023 \quad$ CS151 Lecture 18

Natural Proofs

- To prove circuit lower bounds, we must either:
- Violate largeness: seize upon an incredibly specific feature of hard functions (one not possessed by a random function!)
- Violate constructivity: identify a feature of hard functions that cannot be computed efficiently from the truth table
- no "non-natural property" known for all but the very weakest models...
June 1, 2023
CS151 Lecture 18
24

25
"We do not conclude that researchers should give up on proving serious lower bounds. Quite the contrary, by classifying a large number of techniques that are unable to do the job, we hope to focus research in a more fruitful direction.

CS151 Lecture 18
26
"We do not conclude that researchers should give up on proving serious lower bounds. Quite the contrary, by classifying a large number of techniques that are unable to do the job, we hope to focus research in a more fruitful direction. Pessimism will only be warranted if a long period of time passes without the discovery of a non-naturalizing lower bound proof."

Rudich and Razborov 1994

June 1, $2023 \quad$ CS151 Lecture 18
27

27

Moral
- To resolve central questions:
- avoid relativizing arguments
• use PCP theorem and related results
• focus on circuits, etc...
- avoid constructive arguments
- avoid arguments that yield lower bounds for
random functions
June 1,2023 cs151 Lecture 18

28

29

Course summary

- Time and space
- hierarchy theorems
- FVAL in L
- CVAL P-complete
- QSAT PSPACE-complete
- succinct CVAL EXP-complete

June 1, 2023
CS151 Lecture 18
30

Course summary

- Non-determinism
- NTIME hierarchy theorem
- "NP-intermediate" problems (Ladner's Theorem)
- unary languages (likely) not NP-complete
- Savitch's Theorem
- Immerman-Szelepcsényi Theorem

Problem sets:

- sparse languages (likely) not NP-complete

June 1, 2023
CS151 Lecture 18
${ }_{3} 1$
31

Course summary

- Non-uniformity
- formula lower bound (Andreev, Hastad)
- monotone circuit lower bound (Razborov)

Problem sets:

- Barrington's Theorem
- formula lower bound for parity

June 1, 2023
CS151 Lecture 18
32

Course summary

- Randomness
- polynomial identity testing + Schwartz-Zippel
- unique-SAT (Valiant-Vazirani Theorem)
- Blum-Micali-Yao PRG
- Nisan-Wigderson PRG
- worst-case hardness \Rightarrow average-case hardness
- Trevisan extractor

Problem sets:

- Goldreich-Levin hard bit

June 1, $2023 \quad$ CS151 Lecture 18
33

Course summary

- Alternation

QSAT complete for levels of the PH

- Karp-Lipton theorem
- BPP in PH

Problem sets:

- approximate counting + sampling with an NP-oracle
- VC-dimension is Σ_{3}-complete
- the class $\mathrm{S}_{2}{ }^{\mathrm{P}}$ (final)

June 1, 2023
CS151 Lecture 18
34
34

Course summary
Counting

- \#matching is \#P-complete

Problem sets:

- permanent is \#P-complete
- Toda's theorem: $\mathbf{P H} \subseteq \mathbf{P}^{\# P}$

June 1, 2023
CS151 Lecture 18 ـ
35

Course summary

- Interaction
- IP = PSPACE
$-G I$ in NP \cap coAM
- using NW PRG for MA, variant for AM
- hardness of approximation , PCPs
- elements of the PCP theorem

Problem sets:

- BLR linearity test
- Clique hard to approximate to within N June 1, 2023 CS151 Lecture 18

36

The big picture
- background to contribute to current research
in this area
- many open problems
- young field
- try your hand...

43

[^0]: June 1, 2023

