

 $\begin{array}{c} Proof (continued) \\ \bullet \ |Pr_x[T(f_x) = 1] - Pr_g[T(g) = 1]| \geq (1/2)^{O(n)} \\ \hline distribution D_2: \ pick & x \\ roots of red subtrees & i \\ independently from & & & \\ \{0,1\}^k & & & & & \\ 0,0,1]^k & & & & & & \\ \hline ure 1, 2023 & CS161 \ Lecture 18 & 1 \end{array}$

Proof (continued) • $|\Pr_{x}[T(f_{x}) = 1] - \Pr_{g}[T(g) = 1]| \ge (1/2)^{O(n)}$ distribution D_{2ⁿ/k-1}: pick roots of red subtrees independently from {0,1}^k June 1, 2023 CS151 Lecture 18

P	Proof (continued)	
	circuit C of size $s = 2^{k\delta}$ for whice (x)) = 1] - Pr _{y1, y2} [C(y1, y2) = 1] =	
ne nare	C of size $2^{O(n)}$ for which: (x)) = 1] - Pr _{y1, y2} [C(y ₁ , y ₂) = 1] \ge (1/2) ^{O(n)}
	x, α arbitrary constant that $2^{O(n)} < s$ on.	
June 1, 2023	CS151 Lecture 18	23

"We do not conclude that researchers should give up on proving serious lower bounds.		
-p -: p - : .		
June 1, 2023	CS151 Lecture 18	25
25		

"We do not conclude that researchers should give up on proving serious lower bounds. Quite the contrary, by classifying a large number of techniques that are unable to do the job, we hope to focus research in a more fruitful direction.

26

Course	
Summary	

Course summary
Interaction
IP = PSPACE
Gl in NP ∩ coAM
using NW PRG for MA, variant for AM
using NW P

- Important techniques/ideas:
- simulation and diagonalization
- reductions and completeness
- self-reducibility
- encoding information using low-degree polynomials

CS151 Lecture 18

- randomness
- others...

41

The big picture

- I hope you take away:
 - an ability to extract the essential features of a problem that make it hard/easy...
 - knowledge and tools to connect computational problems you encounter with larger questions in complexity
 - background needed to understand current research in this area

June 1, 2023 CS151 Lecture 18

42

41

