

$\mathsf{NP} \subseteq \mathsf{PCP}[\mathsf{log} \ \mathsf{n}, \, \mathsf{polylog} \ \mathsf{n}]$

Lemma: for every constant $1 > \varepsilon > 0$, the MAX-k-PCS gap problem with t = poly(n) k-ary constraints with k = polylog(n)field size q = polylog(n) $n = q^m$ variables with $m = O(\log n / \log\log n)$ degree of assignments d = polylog(n)gap ϵ is **NP**-hard.

3

6

5

CS151 Lecture 17

May 30, 2023

New topic: relativization and natural proofs

29

Why?

May 30, 2023 CS151 Lecture 17

30

28

Relativization

- Idea: design an oracle A relative to which some statement is *false*
 - implies there can be no relativizing proof of that statement
- e.g. design A for which $P^{A} = NP^{A}$
- Better: also design an oracle B relative to which statement is *true*
 - e.g. also design B for which $P^{B} \neq NP^{B}$
 - implies no relativizing proof can resolve truth of the statement either way !

May 30, 2023 CS151 Lecture 17

33

Oracles for P vs. NP

Goal:

May 30, 2023

35

- oracle A for which $P^A = NP^A$ - oracle B for which $P^B \neq NP^B$
- conclusion: resolving
 P vs. NP

requires a non-relativizing proof

CS151 Lecture 17

34

Natural Proofs

