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NP ⊆ PCP[log n, polylog n]
• MAX-k-PCS gap problem: 

– given:
• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m 
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– YES: some degree d assignment satisfies all
constraints

– NO: no degree d assignment satisfies more 
than (1-𝜖) fraction of constraints
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NP ⊆ PCP[log n, polylog n]

Lemma: for every constant 1 > ε > 0, the 
MAX-k-PCS gap problem with 

t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = qm variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
gap 𝜖

is NP-hard.
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NP ⊆ PCP[log n, polylog n]

• Proof of Lemma
– reduce from 3-SAT
– 3-CNF φ(x1, x2,…, xn)
– can encode as 𝜓:[n] x [n] x [n] x {0,1}3→{0,1}
– 𝜓(i1, i2, i3, b1, b2, b3) = 1 iff φ contains clause 

(xi1
b1 ∨ xi2

b2 ∨ xi3
b3)

– e.g. (x3∨¬x5∨x2) ⇒ 𝜓(3,5,2,1,0,1) = 1
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NP ⊆ PCP[log n, polylog n]
– pick H ⊆ Fq with {0,1} ⊆ H, |H| = polylog n
– pick m = O(log n/loglog n) so |H|m = n
– identify [n] with Hm

– 𝜓:Hm x Hm x Hm x H3 → {0,1} encodes φ
– assignment a:Hm → {0,1}
– Key: a satisfies φ iff ∀i1,i2,i3,b1,b2,b3 

𝜓(i1,i2,i3,b1,b2,b3) = 0 or 
a(i1)=b1 or a(i2)=b2 or a(i3)=b3

CS151 Lecture 17

5

May 30, 2023

NP ⊆ PCP[log n, polylog n]
𝜓:Hm x Hm x Hm x H3 → {0,1} encodes φ
a satisfies φ iff ∀i1,i2,i3,b1,b2,b3

𝜓(i1,i2,i3,b1,b2,b3) = 0 or a(i1)=b1 or a(i2)=b2 or a(i3)=b3

– extend 𝜓 to a function 𝜓’:(Fq)3m+3 → Fq with 
degree at most |H| in each variable

– can extend any assignment a:Hm → {0,1} to 
a’:(Fq)m → Fq with degree |H| in each variable
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NP ⊆ PCP[log n, polylog n]
𝜓’:(Fq)3m+3 → Fq encodes φ
a’:(Fq)m → Fq s.a. iff ∀(i1,i2,i3,b1,b2,b3) ∈ H3m+3

𝜓’(i1,i2,i3,b1,b2,b3) = 0 or a’(i1)=b1 or a’(i2)=b2 or a’(i3)=b3

– define: pa’:(Fq)3m+3 → Fq from a’ as follows 
pa’(i1,i2,i3,b1,b2,b3) = 
𝜓’(i1,i2,i3,b1,b2,b3)(a’(i1) - b1 )(a’(i2) - b2 )(a’(i3) - b3) 

– a’ s.a. iff ∀ (i1,i2,i3,b1,b2,b3) ∈ H3m+3

pa’(i1,i2,i3,b1,b2,b3) = 0
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NP ⊆ PCP[log n, polylog n]
𝜓’:(Fq)3m+3 → Fq encodes φ
a’:(Fq)m → Fq s.a. iff ∀(i1,i2,i3,b1,b2,b3) ∈ H3m+3

pa’(i1,i2,i3,b1,b2,b3) = 0
– note: deg(pa’) ≤ 2(3m+3)|H|
– start using Z as shorthand for (i1,i2,i3,b1,b2,b3) 
– another way to write “a’ s.a.” is: 

• exists p0:(Fq)3m+3 →Fq of degree ≤ 2(3m+3)|H|

• p0(Z) = pa’(Z) ∀Z ∈ (Fq)3m+3

• p0(Z) = 0 ∀Z∈ H3m+3
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NP ⊆ PCP[log n, polylog n]
– Focus on “p0(Z) = 0 ∀Z ∈ H3m+3”
– given: p0:(Fq)3m+3 → Fq

– define: p1(x1, x2, x3, …, x3m+3) =
Σhj∈Hp0(hj, x2, x3, …, x3m+3)x1j

– Claim: 
p0(Z)=0 ∀Z ∈H3m+3⇔ p1(Z)=0 ∀Z∈ FqxH3m+3-1

– Proof (⇒) for each x2, x3, …, x3m+3 ∈ H3m+3-1, 
resulting univariate poly in x1 has all 0 coeffs.
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NP ⊆ PCP[log n, polylog n]
– Focus on “p0(Z) = 0 ∀Z ∈ H3m+3”
– given: p0:(Fq)3m+3 → Fq

– define: p1(x1, x2, x3, …, x3m+3) =
Σhj∈Hp0(hj, x2, x3, …, x3m+3)x1j

– Claim: 
p0(Z)=0 ∀Z ∈H3m+3⇔ p1(Z)=0 ∀Z∈ FqxH3m+3-1

– Proof (⇐) for each x2, x3, …, x3m+3 ∈H3m+3-1, 
univariate poly in x1 is ≡ 0 ⇒ has all 0 coeffs.

deg(p1) ≤ 
deg(p0) + |H|
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NP ⊆ PCP[log n, polylog n]
– given: p1:(Fq)3m+3 → Fq

– define: p2(x1, x2, x3, …, x3m+3) =
Σhj ∈ Hp1(x1, hj, x3, x4, …, x3m+3)x2j

– Claim: 
p1(Z)=0 ∀Z ∈ Fq x H3m+3-1

⇔
p2(Z)=0 ∀Z ∈ (Fq)2 x H3m+3-2

– Proof: same.

deg(p2) ≤ 
deg(p1) + |H|
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NP ∈ PCP[log n, polylog n]
– given: pi-1:(Fq)3m+3 → Fq

– define: pi(x1, x2, x3, …, x3m+3) =
Σhj ∈ Hpi-1(x1, x2, …, xi-1, hj, xi+1, xi+2, …, x3m+3)xij

– Claim: 
pi-1(Z)=0 ∀Z ∈ (Fq)i-1 x H3m+3-(i-1)

⇔
pi(Z)=0 ∀Z ∈ (Fq)i x H3m+3-i

– Proof: same.

deg(pi) ≤ 
deg(pi-1) + |H|
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NP ∈ PCP[log n, polylog n]
– define degree 3m+3+2 poly. δi:Fq→Fq so that 

• δi(v) = 1 if v = i
• δi(v) = 0 if 0 ≤ v ≤ 3m+3+1 and v ≠ i

– define Q:Fq x (Fq)3m+3 → Fq by:
Q(v, Z) = Σi=0…3m+3δi(v)pi(Z) +  δ3m+3+1(v)a’(Z)

– note: degree of Q is at most 
3(3m+3)|H| + 3m + 3 + 2 < 10m|H|
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NP ⊆ PCP[log n, polylog n]
• Recall: MAX-k-PCS gap problem: 

– given:
• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m 
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– YES: some degree d assignment satisfies all
constraints

– NO: no degree d assignment satisfies more 
than (1-𝜖) fraction of constraints
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NP ⊆ PCP[log n, polylog n]
– Instance of MAX-k-PCS gap problem:

• set d = 10m|H|
• given assignment Q:Fq x (Fq)3m+3 → Fq

• expect it to be formed in the way we have 
described from an assignment a:Hm → {0,1} to φ

• note 
to access a’(Z), evaluate Q(3m+3+1, Z) 
pa’(Z) formed from a’ and 𝜓’ (formed from φ)
to access pi(Z), evaluate Q(i, Z)
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NP ⊆ PCP[log n, polylog n]
– Instance of MAX-k-PCS gap problem:

• set d = 10m|H|
• given assignment Q:Fq x (Fq)3m+3 → Fq

• expect it to be formed in the way we have 
described from an assignment a:Hm → {0,1} to φ

• constraints: ∀Z ∈ (Fq)3m+3

(C0,Z): p0(Z) = pa’(Z)
0<i≤3m+2 (Ci,Z): pi(z1, z2, …, zi, zi+1, …, z3m+3) = 

Σhj∈H pi-1(z1, z2, …, zi-1, hj, zi+1, …, zk)zi
j

(C3m+3,Z): p3m+3(Z) = 0 

CS151 Lecture 17

16

May 30, 2023

NP ⊆ PCP[log n, polylog n]
• given Q:Fq x (Fq)3m+3 → Fq of degree d = 10m|H| 
• constraints: ∀Z ∈ (Fq)3m+3

(C0,Z): p0(Z) = pa’(Z)
(Ci,Z): pi(z1, z2, …, zi, zi+1, …, z3m+3) = 

Σhj∈H pi-1(z1, z2, …, zi-1, hj, zi+1, …, zk)zi
j

(C3m+3,Z): p3m+3(Z) = 0
– Schwartz-Zippel: if any one of these sets of 

constraints is violated at all then at least a              
(1 – 12m|H|/q) fraction in the set are violated

Key: all low-
degree polys
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NP ⊆ PCP[log n, polylog n]
• Proof of Lemma (summary):

– reducing 3-SAT to MAX-k-PCS gap problem
– φ(x1, x2,…, xn) instance of 3-SAT
– set m = O(log n/loglog n)
– H ⊆ Fq such that |H|m = n (|H| = polylog n, q ≈|H|3)
– generate |Fq|3m+3 = poly(n) constraints: 

CZ = ⋀i=0…3m+3+1 Ci, Z

– each refers to assignment poly Q and φ (via pa’)
– all polys degree d = O(m|H|) = polylog n
– either all are satisfied or at most d/q = o(1) << ε
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NP ⊆ PCP[log n, polylog n]

• O(log n) random bits to pick a constraint
• query assignment in O(polylog(n)) locations 

to determine if constraint is satisfied
– completeness 1
– soundness (1-𝜖) if prover keeps promise to 

supply degree d polynomial
• prover can cheat by not supplying proof in 

expected form 
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NP ⊆ PCP[log n, polylog n]

• Low-degree testing:
– want: randomized procedure that is given d, 

oracle access to f:(Fq)m → Fq

• runs in poly(m, d) time
• always accepts if deg(f) ≤ d
• rejects with high probability if deg(f) > d

– too much to ask. Why?
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NP ⊆ PCP[log n, polylog n]
Definition: functions f, g are δ-close if

Prx[f(x) ≠ g(x)] ≤ δ
Lemma: ∃δ > 0 and a randomized procedure that 

is given d, oracle access to f:(Fq)m → Fq

– runs in poly(m, d) time
– uses O(m log |Fq|) random bits
– always accepts if deg(f) ≤ d
– rejects with high probability if f is not δ-close

to any g with deg(g) ≤ d
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NP ⊆ PCP[log n, polylog n]

• idea of proof:
– restrict to random line L
– check if it is low degree

– always accepts if deg(f) ≤ d
– other direction more complex

(Fq)m
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NP ⊆ PCP[log n, polylog n]
– can only force prover to supply function f that 

is close to a low-degree polynomial

– how to bridge the gap?

– recall low-degree polynomials form an error 
correcting code (Reed-Muller)

– view “close” function as corrupted codeword
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NP ⊆ PCP[log n, polylog n]

• Self-correction:
– want: randomized procedure that is given x,  

oracle access to f:(Fq)m → (Fq) that is δ-close 
to a (unique) degree d polynomial g
• runs in poly(m, d) time
• uses O(m log |Fq|) random bits

• with high probability outputs g(x)
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NP ⊆ PCP[log n, polylog n]

Lemma: ∃ a randomized procedure that is  
given x, oracle access to f:(Fq)m → (Fq)
that is δ-close to a (unique) degree d 
polynomial g
– runs in poly(m, d) time
– uses O(m log |Fq|) random bits
– outputs g(x) with high probability
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NP ⊆ PCP[log n, polylog n]

• idea of proof:
– restrict to random line L passing through x
– query points along line
– apply error correction

(Fq)m
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NP ⊆ PCP[log n, polylog n]
• Putting it all together:

– given L ∈ NP and an instance x, verifier computes 
reduction to MAX-k-PCS gap problem

– prover supplies proof in form 
f:(Fq)m → (Fq) 

(plus some other info used for low-degree testing)
– verifier runs low-degree test

• rejects if f not close to some low degree function g
– verifier picks random constraint Ci; checks if sat. by g 

• uses self-correction to get values of g from f
– accept if Ci satisfied; otherwise reject 
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New topic: 
relativization 

and
natural proofs
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Approaches to open problems

• Almost all major open problems we have 
seen entail proving lower bounds
– P ≠ NP - P = BPP *
– L ≠ P - NP = AM *
– P ≠ PSPACE
– NC proper
– BPP ≠ EXP
– PH proper
– EXP ⊆ P/poly

• we know circuit lower 
bounds imply derandomization
• more difficult (and recent): 
derandomization implies 
circuit lower bounds!
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Approaches to open problems

• two natural approaches
– simulation + diagonalization (uniform)

– circuit lower bounds (non-uniform)

• no success for either approach as applied 
to date

Why?
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Approaches to open problems

in a precise, formal sense
these approaches are 

too powerful !

• if they could be used to resolve major 
open problems, a side effect would be:
– proving something that is false, or
– proving something that is believed to be false
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Relativization
• Many proofs and techniques we have 

seen relativize:
– they hold after replacing all TMs with oracle 

TMs that have access to an oracle A

– e.g. LA ⊆ PA for all oracles A

– e.g. PA ≠ EXPA for all oracles A
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Relativization

• Idea: design an oracle A relative to which some 
statement is false
– implies there can be no relativizing proof of that 

statement
– e.g. design A for which PA = NPA

• Better: also design an oracle B relative to which 
statement is true
– e.g. also design B for which PB ≠ NPB

– implies no relativizing proof can resolve truth of the 
statement either way !
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Relativization

• Oracles are known that falsify almost every 
major conjecture concerning complexity classes
– for these conjectures, non-relativizing proofs are 

required
– almost all known proofs in Complexity relativize

(sometimes after some reformulation)
– notable exceptions:

• The PCP Theorem 
• IP = PSPACE 
• most circuit lower bounds (more on these later)
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Oracles for P vs. NP

• Goal: 
– oracle A for which PA = NPA
– oracle B for which PB ≠ NPB

• conclusion: resolving 
P vs. NP 

requires a non-relativizing proof
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Oracles for P vs. NP

• for PA = NPA need A to be powerful
– warning: intend to make P more powerful, but 

also make NP more powerful. 
– e.g. A = SAT doesn’t work
– however A = QSAT works:

PSPACE ⊆ PQSAT⊆ NPQSAT⊆ NPSPACE
and we know NPSPACE = PSPACE
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Oracles for P vs. NP

Theorem: there exists an oracle B for which  
PB ≠ NPB.

• Proof: 
– define

L = {1k : ∃ x ∈ B s.t. |x| = k}
– we will show L ∈ NPB – PB.
– easy: L ∈ NPB (no matter what B is)
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Oracles for P vs. NP
– design B by diagonalizing against all 

“PB machines”
– M1, M2, M3, … is an enumeration of 

deterministic OTMs 
– each machine appears infinitely often 

– Bi will be those strings of length ≤ i in B
– we build Bi after simulating machine Mi
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Oracles for P vs. NP
L = {1k : ∃ x ∈ B s.t. |x| = k}

• Proof (continued):
– maintain “exceptions” X that must not go in B
– initially X = { }, B0 = { } 
Stage i:
– simulate Mi(1i) for ilog i steps
– when Mi makes an oracle query q:

• if |q| <  i, answer using Bi-1

• if |q| ≥ i, answer “no”; add q to X
– if simulated Mi accepts 1i  then Bi = Bi-1

– if simulated Mi rejects 1i,  Bi = Bi-1 ∪ {x ∈ {0,1}i : x ∉ X}
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Oracles for P vs. NP
L = {1k : ∃ x ∈ B s.t. |x| = k}

• Proof (continued):
– if Mi accepts, we ensure no strings of length i in B
– therefore 1i ∉ L, and so Mi does not decide L
– if Mi rejects, we ensure some string of length i in B
– Why? 

Bi = Bi-1 ∪ {x ∈ {0,1}i : x ∉ X}
and |X| is at most Σj ≤ i jlog j << 2i

– therefore 1i ∈ L, and so Mi does not decide L 
– Conclude: L ∉ PB
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Circuit lower bounds

• Relativizing techniques are out…
• but most circuit lower bound techniques do 

not relativize
• exponential circuit lower bounds known for 

weak models:
– e.g. constant-depth poly-size circuits

• But, utter failure (so far) for more general 
models. Why?
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Natural Proofs
• Razborov and Rudich defined the following 
“natural” format for circuit lower bounds:
– identify property P of functions f:{0,1}* → {0,1} 
– P = ∪n Pn is a natural property if:

• (useful) ∀n fn ∈ Pn implies f does not have poly-
size circuits    [i.e. fn ∈ Pn implies ckt size ≥ s(n) >> poly(n)]

• (constructive) can decide “fn ∈ Pn?” in poly time 
given the truth table of fn

• (large) at least (½)O(n) fraction of all 22n functions 
on n bits are in Pn

– show some function family g = {gn} is in Pn
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Natural Proofs

• all known circuit lower bound techniques 
are natural for a suitably parameterized 
version of the definition

Theorem (RR): if there is a 2n𝜖-OWF, then 
there is no natural property P. 
– factoring believed to be 2n𝜖 -OWF
– general version also rules out natural 

properties useful for proving many other 
separations, under similar cryptographic 
assumptions
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