

1

$N P \subseteq P C P[\log n$, polylog $n]$

- Proof of Lemma
- reduce from 3-SAT
- $3-\operatorname{CNF} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- can encode as $\psi:[n] \times[n] \times[n] \times\{0,1\}^{3} \rightarrow\{0,1\}$
$-\psi\left(i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}\right)=1$ iff φ contains clause

$$
\left(x_{i_{1}}{ }^{b 1} \vee x_{i_{2}}{ }^{{ }_{2}} \vee \mathrm{x}_{\left.\mathrm{i}{ }^{{ }^{2}}\right)}\right.
$$

-e.g. $\left(x_{3} \vee \neg x_{5} \vee x_{2}\right) \Rightarrow \psi(3,5,2,1,0,1)=1$
May 30,2023
CS151 Lecture 17

$N P \subseteq P C P[\log n$, polylog $n]$

- MAX-k-PCS gap problem:
- given:
- variables $x_{1}, x_{2}, \ldots, x_{n}$ taking values from field F_{q}
- $\mathrm{n}=\mathrm{q}^{\mathrm{m}}$ for some integer m
- k-ary constraints $C_{1}, C_{2}, \ldots, C_{1}$
- assignment viewed as $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- YES: some degree d assignment satisfies all constraints
- NO: no degree d assignment satisfies more than (1- ϵ) fraction of constraints
May 30,2023
CS151 Lecture 17

2

$N P \subseteq P C P[\log n$, polylog $n]$

- pick $H \subseteq F_{q}$ with $\{0,1\} \subseteq H,|H|=$ polylog n
- pick $m=O(\log n / \log \log n)$ so $|H|^{m}=n$
- identify $[\mathrm{n}]$ with H^{m}
$-\psi: \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{3} \rightarrow\{0,1\}$ encodes φ
- assignment a: $\mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$
- Key: a satisfies φ iff $\forall \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$ $\psi\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=0$ or
$a\left(i_{1}\right)=b_{1}$ or $a\left(i_{2}\right)=b_{2}$ or $a\left(i_{3}\right)=b_{3}$
May 30,2023
CS151 Lecture 17
5

$N P \subseteq P C P[\log n$, polylog $n]$

Lemma: for every constant $1>\varepsilon>0$, the MAX-k-PCS gap problem with
$t=\operatorname{poly}(n) k$-ary constraints with $k=\operatorname{polylog}(n)$ field size $q=\operatorname{polylog}(\mathrm{n})$
$n=q^{m}$ variables with $m=O(\log n / \log \log n)$
degree of assignments $d=$ polylog(n)
gap ϵ
is NP-hard
May 30,2023
CS151 Lecture 17
3

$N P \subseteq P C P[\log n$, polylog $n]$

$\psi: \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{3} \rightarrow\{0,1\}$ encodes φ
a satisfies φ iff $\forall \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$
$\psi\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=0$ or $a\left(\mathrm{i}_{1}\right)=\mathrm{b}_{1}$ or $a\left(\mathrm{i}_{2}\right)=\mathrm{b}_{2}$ or $a\left(\mathrm{i}_{3}\right)=\mathrm{b}_{3}$

- extend ψ to a function $\psi^{\prime}:\left(\mathrm{F}_{\mathrm{q}}\right)^{3 \mathrm{~m}+3} \rightarrow \mathrm{~F}_{\mathrm{q}}$ with degree at most $|\mathrm{H}|$ in each variable
- can extend any assignment $\mathrm{a}: \mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$ to $a^{\prime}:\left(F_{q}\right)^{m} \rightarrow F_{q}$ with degree $|H|$ in each variable

6

7

$N P \subseteq P C P[\log n$, polylog $n]$

$\psi^{\prime}:\left(\mathrm{F}_{\mathrm{q}}\right)^{3 \mathrm{~m}+3} \rightarrow \mathrm{~F}_{\mathrm{q}}$ encodes φ
$a^{\prime}:\left(F_{q}\right)^{m} \rightarrow F_{q}$ s.a. iff $\forall\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right) \in \mathrm{H}^{3 m+3}$

$$
\mathrm{p}_{\mathrm{a}}\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=0
$$

- note: $\operatorname{deg}\left(p_{\mathrm{a}^{\prime}}\right) \leq 2(3 m+3)|\mathrm{H}|$
- start using Z as shorthand for ($i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}$)
- another way to write "a' s.a." is:
- exists $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ of degree $\leq 2(3 m+3)|H|$
- $p_{0}(Z)=p_{\mathrm{a}}(Z) \quad \forall Z \in\left(F_{q}\right)^{3 m+3}$
- $p_{0}(Z)=0 \quad \forall Z \in H^{3 m+}$

May 30, $2023 \quad$ CS151 Lecture 17
8

$N P \subseteq P C P[\log n$, polylog $n]$

- Focus on " $p_{0}(Z)=0 \forall Z \in H^{3 m+3 "}$
- given: $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$
- define: $p_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right)=$

$$
\Sigma_{h_{j} \in H} p_{0}\left(h_{j}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right) x_{1}
$$

- Claim:

$p_{0}(Z)=0 \forall Z \in H^{3 m+3} \Leftrightarrow p_{1}(Z)=0 \forall Z \in F_{q} \times H^{3 m+3-1}$

- Proof (\Rightarrow) for each $x_{2}, x_{3}, \ldots, x_{3 m+3} \in H^{3 m+3-1}$, resulting univariate poly in x_{1} has all 0 coeffs. May 30,2023 CS151 Lecture 17

9

$\mathbf{N P} \subseteq \mathbf{P C P}[\log \mathrm{n}$, polylog n$]$

-Focus on " $p_{0}(Z)=0 \forall Z \in H^{3 m+3 "} \quad \operatorname{deg}\left(p_{1}\right) \leq$

- given: $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q} \quad \operatorname{deg}\left(p_{0}\right)+|H|$
- define: $p_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right)=$
$\Sigma_{h_{j} \in H} p_{0}\left(h_{j}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right) x_{1}$
- Claim:
$p_{0}(Z)=0 \forall Z \in H^{3 m+3} \Leftrightarrow p_{1}(Z)=0 \forall Z \in F_{q} x H^{3 m+3-1}$
- Proof (\Leftarrow) for each $x_{2}, x_{3}, \ldots, x_{3 m+3} \in H^{3 m+3-1}$, univariate poly in x_{1} is $\equiv 0 \Rightarrow$ has all 0 coeffs. May 30,2023 CS151 Lecture 17

$\mathrm{NP} \subseteq \mathrm{PCP}[\log \mathrm{n}$, polylog n$]$

```
- given: }\mp@subsup{p}{1}{}:(\mp@subsup{F}{q}{}\mp@subsup{)}{}{3m+3}->\mp@subsup{F}{q}{
    deg(\mp@subsup{p}{2}{})\leq \(\operatorname{deg}\left(\mathrm{p}_{1}\right)+|\mathrm{H}|\)
```

 -define: \(p_{2}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3} m+3\right)=\)
 $$
\Sigma_{h_{j}} \in{ }_{H} p_{1}\left(x_{1}, h_{j}, x_{3}, x_{4}, \ldots, x_{3 m+3}\right) x_{2}{ }^{j}
$$

- Claim:
$\mathrm{p}_{1}(\mathrm{Z})=0 \forall Z \in \mathrm{~F}_{\mathrm{q}} \times \mathrm{H}^{3 \mathrm{~m}+3-1}$
\Leftrightarrow
$\mathrm{p}_{2}(\mathrm{Z})=0 \forall Z \in\left(\mathrm{~F}_{\mathrm{q}}\right)^{2} \times \mathrm{H}^{3 \mathrm{~m}+3-2}$
- Proof: same.

May 30,2023
CS151 Lecture 17
11

NP $\in P C P[\log \mathbf{n}$, polylog $\mathbf{n}]$

- given: $p_{i-1}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ $\operatorname{deg}\left(p_{i}\right) \leq$ $\operatorname{deg}\left(\mathrm{P}_{\mathrm{i}-1}\right)+|\mathrm{H}|$
- define: $p_{i}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right)=$
$\sum_{h_{j} \in H} \mathrm{i}_{\mathrm{i}-1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}-1}, \mathrm{~h}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{3 \mathrm{~m}+3}\right) \mathrm{x}_{\mathrm{j}}$
- Claim:
$\mathrm{p}_{\mathrm{i}-1}(\mathrm{Z})=0 \forall \mathrm{Z} \in\left(\mathrm{F}_{\mathrm{q}}\right)^{)^{-1}} \times \mathrm{H}^{3 m+3-(\mathrm{i}-1)}$
\Leftrightarrow
$p_{i}(Z)=0 \forall Z \in\left(F_{q}\right)^{i} \times H^{3 m+3-i}$
- Proof: same.

May 30,2023
CS151 Lecture 17
12

NP $\in \operatorname{PCP}[\log n$, polylog $n]$

```
- define degree \(3 m+3+2\) poly. \(\delta_{i}: F_{q} \rightarrow F_{q}\) so that - \(\delta_{i}(v)=1\) if \(v=\)
- \(\delta_{i}(v)=0\) if \(0 \leq v \leq 3 m+3+1\) and \(v \neq i\)
- define \(Q: F_{q} \times\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}\) by: \(Q(v, Z)=\Sigma_{i=0 \ldots 3 m+3} \delta_{i}(v) p_{i}(Z)+\delta_{3 m+3+1}(v) a^{\prime}(Z)\)
- note: degree of \(Q\) is at most \(3(3 m+3)|\mathrm{H}|+3 \mathrm{~m}+3+2<10 \mathrm{~m}|\mathrm{H}|\)
May 30,2023
CS151 Lecture 17
```

13

NP \subseteq PCP[log n, polylog $n]$

- Recall: MAX-k-PCS gap problem:
- given:
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ taking values from field F_{q}
- $\mathrm{n}=\mathrm{q}^{\mathrm{m}}$ for some integer m
- k-ary constraints $C_{1}, C_{2}, \ldots, C_{t}$
- assignment viewed as $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- YES: some degree d assignment satisfies all constraints
- NO: no degree d assignment satisfies more than ($1-\epsilon$) fraction of constraints

14

NP \subseteq PCP[log n, polylog $n]$

- Instance of MAX-k-PCS gap problem:
- set d=10m|H|
- given assignment $Q: F_{\mathrm{q}} \times\left(F_{\mathrm{q}}\right)^{3 m+3} \rightarrow F_{\mathrm{q}}$
- expect it to be formed in the way we have described from an assignment a: $\mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$ to φ - note
to access $a^{\prime}(Z)$, evaluate $Q(3 m+3+1, Z)$ $\mathrm{p}_{\mathrm{a}}(\mathrm{Z})$ formed from a' and ψ^{\prime} (formed from φ) to access $p_{i}(Z)$, evaluate $Q(i, Z)$

May 30,2023
CS151 Leeture 17
May $30,2023 \quad$ CS151 Leecture 17

15

$N P \subseteq P C P[\log n$, polylog $n]$

- Instance of MAX-k-PCS gap problem:
- set $\mathrm{d}=10 \mathrm{~m}|\mathrm{H}|$
- given assignment $Q: F_{q} \times\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$
- expect it to be formed in the way we have described from an assignment a: $\mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$ to φ - constraints: $\forall Z \in\left(\mathrm{~F}_{\mathrm{a}}\right)^{3 m+3}$

$$
\begin{aligned}
& \begin{array}{ll}
\left(C_{0, z}\right): & p_{0}(Z)=p_{a}(Z) \\
0<i \leq 3 m+2\left(C_{i, z}\right): & p_{i}\left(z_{1}, z_{2}, \ldots, z_{i}, z_{i+1}, \ldots, z_{3 m+3}\right)=
\end{array} \\
& \Sigma_{\mathrm{hj}_{\mathrm{j}} \mathrm{H}} \mathrm{p}_{\mathrm{i}-1}\left(\mathrm{z}_{1}, z_{2}, \ldots, z_{i-1}, h_{j}, z_{i+1}, \ldots, z_{\mathrm{k}}\right) \mathrm{z}_{\mathrm{i}} \\
& \left(C_{3 m+3, z}\right): \quad p_{3 m+3}(Z)=0 \\
& \text { May } 30,2023 \\
& \text { CS151 Lecture } 17
\end{aligned}
$$

$N P \subseteq P C P[\log n$, polylog $n]$

- given $Q: F_{q} \times\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ of degree $d=10 \mathrm{~m}|\mathrm{H}|$ - constraints: $\forall Z \in\left(F_{q}\right)^{3 m+3}$ \qquad

$\left(C_{0, z}\right):$	$p_{0}(Z)=p_{a}(Z) /$ degree polys
$\left(C_{i, z}\right):$	$p_{i}\left(z_{1}, z_{2}, \ldots, z_{i}, z_{i+1}, \ldots, z_{3 m+3}\right)=$

$\Sigma_{h_{j} \in H} p_{i-1}\left(z_{1}, z_{2}, \ldots, z_{i-1}, h_{j}, z_{i+1}, \ldots, z_{k}\right) z_{i}^{j}$ $\left(C_{3 m+3, r}\right): \quad p_{3 m+3}(Z)=0$

- Schwartz-Zippel: if any one of these sets of constraints is violated at all then at least a
$(1-12 \mathrm{~m} \mid \mathrm{H} / / \mathrm{q})$ fraction in the set are violated

CS151 Lecture 17
17

$N P \subseteq P C P[\log n$, polylog $n]$

- Proof of Lemma (summary):
- reducing 3-SAT to MAX-k-PCS gap problem
$-\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ instance of 3-SAT
- set m = O(log $n / \log \log n$)
$-H \subseteq F_{q}$ such that $|H|^{m}=n \quad\left(|H|=\right.$ polylog $\left.n, q \approx|H|^{3}\right)$
- generate $\left|\mathrm{F}_{\mathrm{q}}\right|^{3 \mathrm{~m}+3}=$ poly (n) constraints:
$C_{z}=\Lambda_{i=0} \ldots 3 m+3+1 C_{i}$
- each refers to assignment poly Q and φ (via $p_{a^{\prime}}$)
- all polys degree $d=O(m|H|)=$ polylog n
- either all are satisfied or at most $d / q=o(1) \ll \varepsilon$

May 30,2023
CS151 Lecture 17
18

$N P \subseteq P C P[\log n$, polylog $n]$

- O(log n) random bits to pick a constraint
- query assignment in $\mathrm{O}($ polylog(n)) locations to determine if constraint is satisfied
- completeness 1
- soundness ($1-\epsilon$) if prover keeps promise to supply degree d polynomial
- prover can cheat by not supplying proof in expected form

May 30,2023 CS151 Lecture 17

19

$N P \subseteq P C P[\log n$, polylog $n]$

- Low-degree testing:
- want: randomized procedure that is given d, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- runs in poly(m, d) time
- always accepts if deg(f) $\leq \mathrm{d}$
- rejects with high probability if deg(f) $>\mathrm{d}$
- too much to ask. Why?

May 30, 2023
CS151 Lecture 17
20

$N P \subseteq P C P[\log n$, polylog $n]$

- can only force prover to supply function f that is close to a low-degree polynomial
- how to bridge the gap?
- recall low-degree polynomials form an error correcting code (Reed-Muller)
- view "close" function as corrupted codeword

May 30,2023
CS151 Lecture 17
23

$N P \subseteq P C P[\log n$, polylog $n]$

Definition: functions f, g are δ-close if
$\operatorname{Pr}_{\mathrm{x}}[\mathrm{f}(\mathrm{x}) \neq \mathrm{g}(\mathrm{x})] \leq \delta$
Lemma: $\exists \delta>0$ and a randomized procedure that is given d, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$

- runs in poly(m, d) time
- uses $\mathrm{O}\left(\mathrm{m} \log \left|\mathrm{F}_{\mathrm{q}}\right|\right)$ random bits
- always accepts if deg(f) $\leq \mathrm{d}$
- rejects with high probability if f is not δ-close to any g with $\operatorname{deg}(\mathrm{g}) \leq \mathrm{d}$
May 30,2023
CS151 Lecture 17

21

$N P \subseteq P C P[\log n$, polylog $n]$

- idea of proof:
- restrict to random line L
- check if it is low degree

- always accepts if deg(f) $\leq \mathrm{d}$
- other direction more complex

May 30,2023
CS151 Lecture 17
22

$N P \subseteq P C P[\log n$, polylog $n]$

- Self-correction:
- want: randomized procedure that is given x, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow\left(F_{q}\right)$ that is δ-close
to a (unique) degree d polynomial g
- runs in poly(m, d) time
- uses $\mathrm{O}\left(\mathrm{m} \log \left|\mathrm{F}_{\mathrm{q}}\right|\right)$ random bits
- with high probability outputs $\mathrm{g}(\mathrm{x})$

May 30,2023
CS151 Lecture 17
24

$N P \subseteq P C P[\log n$, polylog $n]$

Lemma: \exists a randomized procedure that is given x, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow\left(F_{q}\right)$ that is δ-close to a (unique) degree d polynomial g

- runs in poly(m, d) time
- uses $O\left(m \log \left|F_{q}\right|\right)$ random bits
- outputs $g(x)$ with high probability

May 30,2023
CS151 Lecture 17

25

$N P \subseteq P C P[\log n$, polylog $n]$

- idea of proof:
- restrict to random line L passing through x
- query points along line
- apply error correction

May 30,2023
CS151 Lecture 17
26

$N P \subseteq P C P[\log n$, polylog $n]$

- Putting it all together:
- given $L \in N P$ and an instance x, verifier computes reduction to MAX-k-PCS gap problem
- prover supplies proof in form

$$
\mathrm{f}:\left(\mathrm{F}_{\mathrm{q}}\right)^{\mathrm{m}} \rightarrow\left(\mathrm{~F}_{\mathrm{q}}\right)
$$

(plus some other info used for low-degree testing)

- verifier runs low-degree test
- rejects if f not close to some low degree function g
- verifier picks random constraint C_{i}; checks if sat. by g
- uses self-correction to get values of g from
- accept if C_{i} satisfied; otherwise reject

May 30,2023
CS151 Lecture 17
27

28

Approaches to open problems

- Almost all major open problems we have seen entail proving lower bounds

$$
-P \neq N P \quad-P=B P P^{*}
$$

$$
-\mathbf{L} \neq \mathbf{P}
$$

$$
-N P=A M \text { * }
$$

- $\mathbf{P} \neq$ PSPACE
- NC proper
- BPP \neq EXP
- PH proper
- EXP ¢ P/poly
we know circuit lower bounds imply derandomization - more difficult (and recent) derandomization implies circuit lower bounds!

May 30, $2023 \quad$ CS151 Lecture 17
29

Approaches to open problems

- two natural approaches
- simulation + diagonalization (uniform)
- circuit lower bounds (non-uniform)
- no success for either approach as applied to date

	Why?
May 30,2023	CS151 Lecture 17

30

Approaches to open problems

in a precise, formal sense these approaches are too powerful!

- if they could be used to resolve major open problems, a side effect would be: - proving something that is false, or - proving something that is believed to be false

May 30,2023
CS151 Lecture 17
31

Relativization

- Many proofs and techniques we have seen relativize:
- they hold after replacing all TMs with oracle TMs that have access to an oracle A
- e.g. $L^{A} \subseteq P^{A}$ for all oracles A
- e.g. PA \neq EXPA A for all oracles A

May 30,2023
CS151 Lecture 17
32

- Goal:

May 30, 2023
35

Relativization

- Idea: design an oracle A relative to which some statement is false
- implies there can be no relativizing proof of that statement
- e.g. design A for which PA $=N^{A}$
- Better: also design an oracle B relative to which statement is true
- e.g. also design B for which $\mathrm{P}^{\mathrm{B}} \neq \mathrm{NP}^{B}$
- implies no relativizing proof can resolve truth of the statement either way!

May 30,2023
CS151 Lecture 17

33

Relativization

- Oracles are known that falsify almost every major conjecture concerning complexity classes
- for these conjectures, non-relativizing proofs are required
- almost all known proofs in Complexity relativize (sometimes after some reformulation)
- notable exceptions:
- The PCP Theorem

IP = PSPACE

- most circuit lower bounds (more on these later)

May 30,2023
CS151 Lecture 17
34

Oracles for \mathbf{P} vs. $\mathbf{N P}$

- oracle A for which PA = NPA
- oracle B for which $\mathrm{P}^{\mathrm{B}} \neq \mathrm{NP}^{B}$
- conclusion: resolving
P vs. NP
requires a non-relativizing proof

CS151 Lecture 17

Oracles for \mathbf{P} vs. $\mathbf{N P}$

- for $P^{A}=N^{A}$ need A to be powerful
- warning: intend to make \mathbf{P} more powerful, but also make NP more powerful.
- e.g. A = SAT doesn't work
- however A = QSAT works:
$\mathrm{PSPACE} \subseteq \mathrm{PQSAT}^{\text {Q }} \subseteq \mathrm{NPQSAT} \subseteq$ NPSPACE
and we know NPSPACE $=$ PSPACE

May 30,2023
CS151 Lecture 17
36

Oracles for \mathbf{P} vs. NP

Theorem: there exists an oracle B for which $\mathrm{P}^{\mathrm{B}} \neq \mathrm{NP}^{\mathrm{B}}$.

- Proof:
- define

$$
L=\left\{1^{k}: \exists x \in B \text { s.t. }|x|=k\right\}
$$

- we will show $L \in N^{B}-P^{B}$
- easy: $L \in N P^{B}$ (no matter what B is)

May 30,2023
CS151 Lecture 17
37

Oracles for \mathbf{P} vs. $\mathbf{N P}$

- design B by diagonalizing against all "PB machines"
$-M_{1}, M_{2}, M_{3}, \ldots$ is an enumeration of deterministic OTMs
- each machine appears infinitely often
- B_{i} will be those strings of length $\leq i$ in B
- we build B_{i} after simulating machine M_{i}

May 30,2023
CS151 Lecture 17
38

Oracles for \mathbf{P} vs. NP

$L=\{1 \mathrm{k}: \exists x \in B$ s.t. $|x|=k$

- Proof (continued)
- maintain "exceptions" X that must not go in B
- initially $X=\{ \}, B_{0}=\{ \}$

Stage i:

- simulate $M_{i}\left({ }^{1}\right)$ for ${ }^{\text {log }}$ i steps
- when M_{i} makes an oracle query q - if $|q|<i$, answer using B_{i-1}
- if $|\mathrm{q}| \geq \mathrm{i}$, answer "no"; add q to X
- if simulated M_{i} accepts 1^{i} then $B_{i}=B_{i-1}$
- if simulated M_{i} rejects $1^{i}, B_{i}=B_{i-1} \cup\left\{x \in\{0,1\}^{i}: x \notin X\right\}$

May 30,2023
CS151 Lecture 17
39

Oracles for \mathbf{P} vs. NP

$$
L=\{1 \mathrm{k}: \exists x \in B \text { s.t. }|x|=k\}
$$

- Proof (continued)
- if M_{i} accepts, we ensure no strings of length i in B
- therefore $1^{i} \notin L$, and so M_{i} does not decide L
- if M_{i} rejects, we ensure some string of length i in B
- Why?
$B_{i}=B_{i-1} \cup\left\{x \in\{0,1\}^{i}: x \notin X\right\}$
and $|X|$ is at most $\Sigma_{j \leq i} j^{\log j} \ll 2^{i}$
- therefore $1^{i} \in L$, and so M_{i} does not decide L
- Conclude: $L \notin P^{B}$

May 30,2023 CS151 Lecture 17

Circuit lower bounds

- Relativizing techniques are out...
- but most circuit lower bound techniques do not relativize
- exponential circuit lower bounds known for weak models:
- e.g. constant-depth poly-size circuits
- But, utter failure (so far) for more general models. Why?

May 30,2023
CS151 Lecture 17
41

Natural Proofs

- Razborov and Rudich defined the following "natural" format for circuit lower bounds:
- identify property \underline{P} of functions $:\{\{0,1\} \rightarrow\{0,1\}$
$-\underline{P}=U_{n} \underline{P}_{n}$ is a natural property if:
- (useful) $\forall n f_{n} \in \underline{P}_{n}$ implies f does not have poly size circuits [i.e. $\mathrm{f}_{\mathrm{n}} \in$ P. implies ckt size $\geq \mathrm{s}(\mathrm{n}) \gg$ poly (n) - (constructive) can decide " $\mathrm{f}_{n} \in \mathbf{P}_{n}$?" in poly time given the truth table of f_{n}
- (large) at least $\begin{aligned} & 1 / 2 \\ & \text { on } n \text { bits are in }\end{aligned}$
- show some function family $\mathrm{g}=\left\{\mathrm{g}_{n}\right\}$ is in \mathbf{P}^{n}

May 30,2023
CS151 Lecture 17
42
Natural Proofs

- all known circuit lower bound techniques
are natural for a suitably parameterized
version of the definition
Theorem (RR): if there is a $2^{n \epsilon}$-OWF, then
there is no natural property \underline{P}.
- factoring believed to be $2^{n^{\epsilon}}$-OWF
- general version also rules out natural
properties useful for proving many other
separations, under similar cryptographic
assumptions
мay 30,2023

43

