
1

Lecture 16
May 25, 2023

1

May 25, 2023

MAX-k-SAT

• Missing link: first gap-producing reduction
– history’s guide

it should have something to do with SAT

• Definition: MAX-k-SAT with gap ε
– instance: k-CNF φ
– YES: some assignment satisfies all clauses
– NO: no assignment satisfies more than (1 – ε)

fraction of clauses

CS151 Lecture 16

2

May 25, 2023

Proof systems viewpoint

• MAX-k-SAT with gap ε NP-hard ⇒ for any
language L ∈ NP proof system of form:
– given x, compute reduction to MAX-k-SAT: 𝜙x

– expected proof is satisfying assignment for 𝜙x

– verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x ∈ L ⇒ Pr[verifier accepts] = 1
x ∉ L ⇒ Pr[verifier accepts] ≤ (1 – ε)

– can repeat O(1/ε) times for error < ½

CS151 Lecture 16

3

May 25, 2023

Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard
as designing a proof system for NP in which:
– verifier only performs local tests

• can think of reduction showing “MAX-k-SAT with
gap ε” NP-hard as designing a proof system for
NP in which:
– verifier only performs local tests
– invalidity of proof* evident all over: “holographic

proof” and an 𝜖 fraction of tests notice such invalidity
CS151 Lecture 16

4

May 25, 2023

PCP

• Probabilistically Checkable Proof (PCP)
permits novel way of verifying proof:
– pick random local test
– query proof in specified k locations
– accept iff passes test

• fancy name for a NP-hardness reduction

CS151 Lecture 16

5

May 25, 2023

PCP

• PCP[r(n),q(n)]: set of languages L with
p.p.t. verifier V that has (r, q)-restricted
access to a string “proof”
– V tosses O(r(n)) coins
– V accesses proof in O(q(n)) locations
– (completeness) x ∈ L ⇒ ∃ proof such that

Pr[V(x, proof) accepts] = 1
– (soundness) x ∉ L ⇒ ∀ proof*

Pr[V(x, proof*) accepts] ≤ ½

CS151 Lecture 16

6

2

May 25, 2023

PCP

• Two observations:
– PCP[1, poly n] = NP

proof?
– PCP[log n, 1] ⊆ NP

proof?

The PCP Theorem (AS, ALMSS):
PCP[log n, 1] = NP.

CS151 Lecture 16

7

May 25, 2023

PCP

Corollary: MAX-k-SAT is NP-hard to
approximate to within some constant 𝜖.
– using PCP[log n, 1] protocol for, say, VC
– enumerate all 2O(log n) = poly(n) sets of queries
– construct a k-CNF φi for verifier’s test on each

• note: k-CNF since function on only k bits
– “YES” VC instance ⇒ all clauses satisfiable
– “NO” VC instance ⇒ every assignment fails

to satisfy at least ½ of the φi⇒ fails to satisfy
an 𝜖 = (½)2-k fraction of clauses.

CS151 Lecture 16

8

May 25, 2023

The PCP Theorem

• Elements of proof:
– arithmetization of 3-SAT

• we will do this
– low-degree test

• we will state but not prove this
– self-correction of low-degree polynomials

• we will state but not prove this
– proof composition

• we will describe the idea

CS151 Lecture 16

9

May 25, 2023

The PCP Theorem

• Two major components:

– NP ⊆ PCP[log n, polylog n] (“outer verifier”)
• we will prove this from scratch, assuming low-

degree test, and self-correction of low-degree
polynomials

– NP ⊆PCP[n2, 1] (“inner verifier”)
• we will prove (low-degree test on Problem Set)

CS151 Lecture 16

10

May 25, 2023

Proof Composition (idea)
NP ⊆ PCP[log n, polylog n] (“outer verifier”)

NP ⊆ PCP[n2, 1] (“inner verifier”)

• composition of verifiers:
– reformulate “outer” so that it uses O(log n)

random bits to make 1 query to each of 3
provers

– replies r1, r2, r3 have length polylog n
– Key: accept/reject decision computable from

r1, r2, r3 by small circuit C
CS151 Lecture 16

11

May 25, 2023

Proof Composition (idea)
NP ⊆ PCP[log n, polylog n] (“outer verifier”)

NP ⊆ PCP[n2, 1] (“inner verifier”)

• composition of verifiers (continued):
– final proof contains proof that C(r1, r2, r3) = 1

for inner verifier’s use
– use inner verifier to verify that C(r1,r2,r3) = 1
– O(log n)+polylog n randomness
– O(1) queries
– tricky issue: consistency

CS151 Lecture 16

12

3

May 25, 2023

Proof Composition (idea)

• NP ⊆ PCP[log n, 1] comes from
– repeated composition

– PCP[log n, polylog n] with PCP[log n, polylog n] yields
PCP[log n, polyloglog n]

– PCP[log n, polyloglog n] with PCP[n2, 1] yields
PCP[log n, 1]

• details omitted…

CS151 Lecture 16

13

May 25, 2023

The inner verifier

Theorem: NP ⊆ PCP[n2, 1]
Proof (first steps):

1. Quadratic Equations is NP-hard
2. PCP for QE:

proof = all quadratic functions of a soln. x
verification = check that a random linear
combination of equations is satisfied by x

(if prover keeps promise to supply all quadratic fns of x)

CS151 Lecture 16

14

Quadratic Equations

• quadratic equation over F2:
∑i<j ai,j Xi Xj + ∑i bi Xi + c = 0

• language QUADRATIC EQUATIONS (QE)
= { systems of quadratic equations over F2 that
have a solution (assignment to the X variables) }

May 25, 2023 CS151 Lecture 16

15

Quadratic Equations

Lemma: QE is NP-complete.
Proof: clearly in NP; reduce from CIRCUIT SAT

– circuit C an instance of CIRCUIT SAT
– QE variables = variables + gate variables

May 25, 2023

¬ gi

z

∧ gi

z1 z2

gi – z = 1 gi – z1z2 = 0

∨ gi

z1 z2

gi – (1-z1)(1-z2) = 1

… and gout = 1

CS151 Lecture 16

16

Quadratic Functions Code

• intended proof:
– F the field with 2 elements
– given x ∈ Fn, a solution to instance of QE
– fx: Fn → F2 all linear functions of x

fx(a) = ∑i ai xi

– gx: Fn x n → F2 includes all quadratic fns of x
gx(A) = ∑i, j A[i,j]xixj

– KEY: can evaluate any quadratic function of x
with a single evaluation of fx and gx

May 25, 2023 CS151 Lecture 16

17

PCP for QE

If prover keeps promise to supply all quadratic fns
of x, a solution of QE instance…
• Verifier’s action:
–query a random linear combination R of the
equations of the QE instance
–Completeness: obvious
–Soundness: x fails to satisfy some equation;
imagine picking coeff. for this one last

Pr[x satisfies R] = 1/2
May 25, 2023 CS151 Lecture 16

18

4

PCP for QE

To “enforce promise”, verifier needs to
perform:

– linearity test: verify f, g are (close to) linear
– self-correction: access the linear f’, g’ that are

close to f, g
[so f’ = Had(u) and g’ = Had(V)]

– consistency check: verify V = u ⊗ u
May 25, 2023

x ∈ Fn soln fx(a) = ∑i ai xi Had(x)
gx(A) = ∑i, j A[i,j]xixj Had(x⊗x)

CS151 Lecture 16

19

PCP for QE

• Linearity test: given access to h:Fm → F
– pick random a,b; check if h(a) + h(b) = h(a+b);

repeat O(1) times
– do this for functions f and g supplied by prover

Theorem [BLR]: h linear⇒ prob. success =
1; prob. success ≥ 1 – 𝛿 ⇒ ∃ linear h’ s.t.

Pra [h’(a) = h(a)] ≥ 1 – O(𝛿)

May 25, 2023

x ∈ Fn soln fx(a) = ∑i ai xi Had(x)
gx(A) = ∑i, j A[i,j]xixj Had(x⊗x)

CS151 Lecture 16

20

PCP for QE

• Self-correction:
– given access to h:Fm→F close to linear h’; i.e.,

Pra [h’(a) = h(a)] ≥ 1 – O(𝛿)
– to access h’(a), pick random b; compute

h(b) + h(a+b)
– with prob. at least 1 – 2⋅O(𝛿), h(b) = h’(b) and

h(a+b) = h’(a+b); hence we compute h’(a)
May 25, 2023

x ∈ Fn soln fx(a) = ∑i ai xi Had(x)
gx(A) = ∑i, j A[i,j]xixj Had(x⊗x)

CS151 Lecture 16

21

PCP for QE

• Consistency check: given access to linear
functions f’ = Had(u) and g’ = Had(V)
– pick random a, b ∈ Fn; check that

f’(a)f’(b) = g’(abT)
– completeness: if V = u ⊗ u
f’(a)f’(b) = (∑iaiui)(∑ibiui) = ∑i,j aibjV[i,j] = g’(abT)

May 25, 2023

x ∈ Fn soln fx(a) = ∑i ai xi Had(x)
gx(A) = ∑i, j A[i,j]xixj Had(x⊗x)

CS151 Lecture 16

22

PCP for QE

• Consistency check: given access to linear
functions f’ = Had(u) and g’ = Had(V)
– soundness: claim that if V ≠ u ⊗ u

Pr[(∑iaiui)(∑ibiui) = ∑i,j aibjV[i,j]] ≤ 3/4

Pr[(uuT)b ≠ Vb] ≥ 1/2
Pr[aT(uuT)b ≠ aTVb] ≥ ½⋅½ = ¼

May 25, 2023

∃ i,j s.t. uuT and V
differ in entry (i,j);
pick bj last∃ i s.t. (uuT)b and

Vb differ in entry i;
pick ai last

x ∈ Fn soln fx(a) = ∑i ai xi Had(x)
gx(A) = ∑i, j A[i,j]xixj Had(x⊗x)

CS151 Lecture 16

23

May 25, 2023

The outer verifier

Theorem: NP ⊆ PCP[log n, polylog n]

Proof (first steps):
– define: Polynomial Constraint Satisfaction

(PCS) problem

– prove: PCS gap problem is NP-hard

CS151 Lecture 16

24

5

May 25, 2023

NP ⊆ PCP[log n, polylog n]

• MAX-k-SAT
– given: k-CNF 𝜙
– output: max. # of simultaneously satisfiable clauses

• generalization: MAX-k-CSP
– given:

• variables x1, x2, …, xn taking values from set S
• k-ary constraints C1, C2, …, Ct

– output: max. # of simultaneously satisfiable
constraints

CS151 Lecture 16

25

May 25, 2023

NP ⊆ PCP[log n, polylog n]

• algebraic version: MAX-k-PCS
– given:

• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– output: max. # of constraints simultaneously
satisfiable by an assignment that has deg. ≤ d

CS151 Lecture 16

26

May 25, 2023

NP ⊆ PCP[log n, polylog n]
• MAX-k-PCS gap problem:

– given:
• variables x1, x2, …, xn taking values from field Fq

• n = qm for some integer m
• k-ary constraints C1, C2, …, Ct

– assignment viewed as f:(Fq)m → Fq

– YES: some degree d assignment satisfies all
constraints

– NO: no degree d assignment satisfies more
than (1-𝜖) fraction of constraints

CS151 Lecture 16

27

May 25, 2023

NP ⊆ PCP[log n, polylog n]

Lemma: for every constant 1 > ε > 0, the
MAX-k-PCS gap problem with

t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = qm variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
gap 𝜖

is NP-hard.

CS151 Lecture 16

28

May 25, 2023

NP ⊆ PCP[log n, polylog n]
t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = qm variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)

• check: headed in right direction
– O(log n) random bits to pick a constraint
– query assignment in O(polylog(n)) locations to

determine if it is satisfied
– completeness 1; soundness 1- 𝜖
(if prover keeps promise to supply degree d polynomial)

CS151 Lecture 16

29

May 25, 2023

NP ⊆ PCP[log n, polylog n]

• Proof of Lemma
– reduce from 3-SAT
– 3-CNF φ(x1, x2,…, xn)
– can encode as 𝜓:[n] x [n] x [n] x {0,1}3→{0,1}
– 𝜓(i1, i2, i3, b1, b2, b3) = 1 iff φ contains clause

(xi1
b1 ∨ xi2

b2 ∨ xi3
b3)

– e.g. (x3∨¬x5∨x2) ⇒ 𝜓(3,5,2,1,0,1) = 1

CS151 Lecture 16

30

6

May 25, 2023

NP ⊆ PCP[log n, polylog n]
– pick H ⊆ Fq with {0,1} ⊆ H, |H| = polylog n
– pick m = O(log n/loglog n) so |H|m = n
– identify [n] with Hm

– 𝜓:Hm x Hm x Hm x H3 → {0,1} encodes φ
– assignment a:Hm → {0,1}
– Key: a satisfies φ iff ∀i1,i2,i3,b1,b2,b3

𝜓(i1,i2,i3,b1,b2,b3) = 0 or
a(i1)=b1 or a(i2)=b2 or a(i3)=b3

CS151 Lecture 16

31

May 25, 2023

NP ⊆ PCP[log n, polylog n]
𝜓:Hm x Hm x Hm x H3 → {0,1} encodes φ
a satisfies φ iff ∀i1,i2,i3,b1,b2,b3

𝜓(i1,i2,i3,b1,b2,b3) = 0 or a(i1)=b1 or a(i2)=b2 or a(i3)=b3

– extend 𝜓 to a function 𝜓’:(Fq)3m+3 → Fq with
degree at most |H| in each variable

– can extend any assignment a:Hm → {0,1} to
a’:(Fq)m → Fq with degree |H| in each variable

CS151 Lecture 16

32

May 25, 2023

NP ⊆ PCP[log n, polylog n]
𝜓’:(Fq)3m+3 → Fq encodes φ
a’:(Fq)m → Fq s.a. iff ∀(i1,i2,i3,b1,b2,b3) ∈ H3m+3

𝜓’(i1,i2,i3,b1,b2,b3) = 0 or a’(i1)=b1 or a’(i2)=b2 or a’(i3)=b3

– define: pa’:(Fq)3m+3 → Fq from a’ as follows
pa’(i1,i2,i3,b1,b2,b3) =
𝜓’(i1,i2,i3,b1,b2,b3)(a’(i1) - b1)(a’(i2) - b2)(a’(i3) - b3)

– a’ s.a. iff ∀ (i1,i2,i3,b1,b2,b3) ∈ H3m+3

pa’(i1,i2,i3,b1,b2,b3) = 0
CS151 Lecture 16

33

