Lecture 16
May 25, 2023

Proof systems viewpoint

« can think of reduction showing k-SAT NP-hard
as designing a proof system for NP in which:
— verifier only performs local tests

.

can think of reduction showing “MAX-k-SAT with

gap €” NP-hard as designing a proof system for

NP in which:

— verifier only performs local tests

— invalidity of proof* evident all over: “holographic
proof” and an e fraction of tests notice such invalidity

May 25, 2023 CS151 Lecture 16

MAX-k-SAT

» Missing link: first gap-producing reduction

— history’s guide
it should have something to do with SAT

* Definition: MAX-k-SAT with gap €
—instance: k-CNF ¢
— YES: some assignment satisfies all clauses
—NO: no assignment satisfies more than (1 —¢€)

fraction of clauses

May 25, 2023 CS151 Lecture 16

Proof systems viewpoint

* MAX-k-SAT with gap € NP-hard = for any
language L € NP proof system of form:
— given x, compute reduction to MAX-k-SAT: ¢x
— expected proof is satisfying assignment for ¢y
— verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x € L = Pr{verifier accepts] = 1

x & L = Pr{verifier accepts] < (1 —¢)
— can repeat O(1/¢) times for error < %2

May 25, 2023 CS151 Lecture 16

PCP

* Probabilistically Checkable Proof (PCP)
permits novel way of verifying proof:

— pick random local test
— query proof in specified k locations
— accept iff passes test

«» fancy name for a NP-hardness reduction

May 25, 2023 CS151 Lecture 16

PCP

* PCP[r(n),q(n)]: set of languages L with
p.p.t. verifier V that has (r, q)-restricted
access to a string “proof”

—V tosses O(r(n)) coins
—V accesses proof in O(g(n)) locations
— (completeness) x € L = 3 proof such that
Pr{V(x, proof) accepts] = 1
— (soundness) x ¢ L = V proof*
Pr{V(x, proof*) accepts] < %2

May 25, 2023 CS151 Lecture 16

PCP

* Two observations:

—PCPJ[1, poly n] = NP
proof?

—PCP[log n, 1 € NP
proof?

The PCP Theorem (AS, ALMSS):
PCP[log n, 1] = NP.

May 25, 2023 CS151 Lecture 16

The PCP Theorem

» Two major components:

—NP < PCPJlog n, polylog n] (“outer verifier”)
« we will prove this from scratch, assuming low-

degree test, and self-correction of low-degree
polynomials

— NP < PCP[n?, 1] (“inner verifier”)
« we will prove (low-degree test on Problem Set)

May 25, 2023 CS151 Lecture 16

PCP

Corollary: MAX-k-SAT is NP-hard to
approximate to within some constant e.
—using PCP[log n, 1] protocol for, say, VC
—enumerate all 20(cgn) = poly(n) sets of queries

— construct a k-CNF «; for verifier’s test on each
« note: k-CNF since function on only k bits

—“YES” VC instance = all clauses satisfiable

—“NO” VC instance = every assignment fails

to satisfy at least %% of the @, = fails to satisfy
an e = (Y2)2* fraction of clauses.

May 25, 2023 CS151 Lecture 16

The PCP Theorem

Elements of proof:
— arithmetization of 3-SAT
» we will do this
— low-degree test
< we will state but not prove this
— self-correction of low-degree polynomials
« we will state but not prove this
— proof composition
= we will describe the idea

May 25, 2023 CS151 Lecture 16

10

Proof Composition (idea)

NP < PCPJlog n, polylog n] (“outer verifier”)
NP < PCP[n2, 1] (“inner verifier”)

» composition of verifiers:

—reformulate “outer” so that it uses O(log n)
random bits to make 1 query to each of 3
provers

—replies ry, 1y, r3 have length polylog n

— Key: accept/reject decision computable from
r1, Iz, r3 by small circuit C

May 25, 2023 CS151 Lecture 16

May 25, 2023

Proof Composition (idea)

NP < PCP[log n, polylog n] (“outer verifier”)
NP < PCP[n?, 1] (“inner verifier”)

» composition of verifiers (continued):

— final proof contains proof that C(r, rz, r3) = 1
for inner verifier's use

— use inner verifier to verify that C(ry,rz,r3) = 1
— O(log n)+polylog n randomness

—0O(1) queries

— tricky issue: consistency

CS151 Lecture 16

11

12

Proof Composition (idea)

* NP < PCPJlog n, 1] comes from
—repeated composition

— PCPJlog n, polylog n] with PCP[log n, polylog n] yields
PCP[log n, polyloglog n]

— PCPJlog n, polyloglog n] with PCP[n?, 1] yields
PCPJlog n, 1]
« details omitted...

May 25, 2023 CS151 Lecture 16

The inner verifier

Theorem: NP < PCP[n?, 1]
Proof (first steps):
1. Quadratic Equations is NP-hard
2. PCP for QE:
proof = all quadratic functions of a soln. x

verification = check that a random linear
combination of equations is satisfied by x

(if prover keeps promise to supply all quadratic fns of x)

Quadratic Equations

* quadratic equation over F3:
Yiai XiXj+Yibi Xi+c=0

* language QUADRATIC EQUATIONS (QE)

= { systems of quadratic equations over F, that
have a solution (assignment to the X variables) }

13

Quadratic Equations

Lemma: QE is NP-complete.

Proof: clearly in NP; reduce from CIRCUIT SAT
— circuit C an instance of CIRCUIT SAT
— QE variables = variables + gate variables

g Ag Ve

)] /‘\ZZ] /\22

lo-z=1] [9-zz=0] [o-(12)1z)=1]

May 25, 2023 CS151 Lecture 16

16

May 25, 2023 CS151 Lecture 16 May 25, 2023 CS151 Lecture 16
14 15
Quadratic Functions Code PCP for QE
* intended proof: If prover keeps promise to supply all quadratic fns
—F the field with 2 elements of x, a solution of QE instance...
—given x € Fn, a solution to instance of QE * Verifier's action:
—fy: Fn > F; all linear functions of x —query a random linear combination R of the
f(a)=Yiax equations of the QE instance
— gy Fnxn - F, includes all quadratic fns of x —Completeness: obvious
a.(A) = 3 ; Al Ixix —Soundness: x fails to satisfy some equation;
x TR) imagine picking coeff. for this one last
—KEY: can evaluate any quadratic function of x Prix satisfies R] = 1/2
with a single evaluation of f, and gy
May 25, 2023 CS151 Lecture 16 May 25, 2023 CS151 Lecture 16
17 18

PCP for QE

X € Fn soln fx(a) = YiaiXi Had(x)
g.(A) = 3 jAli,jlxx Had(x®x)

To “enforce promise”, verifier needs to
perform:
— linearity test: verify f, g are (close to) linear
— self-correction: access the linear f', g’ that are
close tof, g
[so f = Had(u) and g’ = Had(V)]
— consistency check: verify V=u @ u

PCP for QE

x € Fn soln f(a)=Yiaix; Had(x)
g, (A) = X jAlijlxix; Had(x®x)

* Linearity test: given access to h:F™ - F

— pick random a,b; check if h(a) + h(b) = h(a+b);

repeat O(1) times

—do this for functions f and g supplied by prover
Theorem [BLR]: h linear = prob. success =

1; prob. success = 1—§ = I linear h’ s.t.

Pra[h'(a) = h(a)] = 1 — O(5)

May 25, 2023 CS151 Lecture 16

PCP for QE

x € Fr soln f(a)=Xiaix Had(x)
g,(A) = 3 jAli,jlxx Had(x®x)

+ Self-correction:
— given access to h:Fm—F close to linear h’; i.e.,
Pra [h’(@) = h(a)] = 1 -0(6)
—to access h'(a), pick random b; compute
h(b) + h(a+b)
— with prob. at least 1 — 2-O(6), h(b) = h’(b) and
h(a+b) = h’(a+b); hence we compute h’(a)

May 25, 2023 CS151 Lecture 16

May 25, 2023 CS151 Lecture 16
19
PCP for QE
X € F soln f(a)=Yiax Had(x)

g,(A) = % jAll,jlxix; _Had(x®x)

+ Consistency check: given access to linear
functions ' = Had(u) and g’ = Had(V)
— pick random a, b € Fn; check that
f(a)f(b) = g'(abT)
—completeness: if V=u@u
f(@)f (b) = (T)(Xibiu) = Xi; abV[ij = g'(ab")

May 25, 2023 CS151 Lecture 16

22

20

21

PCP for QE

x € Fn soln f(a)=Yiaix; Had(x)
g9,(A) = ¥ jAlLjlxx; Had(x®x)

» Consistency check: given access to linear
functions f = Had(u) and g’ = Had(V)
—soundness: claim that if V =3 ijsturandV

Priau)(Zbu) = Jis.t. (uumb and
Vb differ in entry i;
Pr[(uuT)b £ Vb|pick a; last

PriaT(uu)b = a™Vb] > V%% = %

May 25, 2023 CS151 Lecture 16

The outer verifier

Theorem: NP € PCP[log n, polylog n]

Proof (first steps):
— define: Polynomial Constraint Satisfaction
(PCS) problem

— prove: PCS gap problem is NP-hard

May 25, 2023 CS151 Lecture 16

23

24

NP < PCPJlog n, polylog n]

MAX-k-SAT
—given: k-CNF ¢
— output: max. # of simultaneously satisfiable clauses

* generalization: MAX-k-CSP
—given:

« variables x4, Xy, ..., X, taking values from set S
« k-ary constraints C,, C,, ..., C,

— output: max. # of simultaneously satisfiable
constraints

May 25, 2023

CS151 Lecture 16

25

NP < PCPJlog n, polylog n]

Lemma: for every constant 1 > € > 0, the

MAX-k-PCS gap problem with
t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = g variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
gap e

is NP-hard.

May 25, 2023 CS151 Lecture 16

28

NP < PCPJ[log n, polylog n]

+ algebraic version: MAX-k-PCS
—given:
« variables x1, X, ..., X, taking values from field F
* n =q" for some integer m
« k-ary constraints C,, C,, ..., C,
—assignment viewed as f:(Fq)™ - F

— output: max. # of constraints simultaneously
satisfiable by an assignment that has deg. < d

May 25, 2023

CS151 Lecture 16

26

NP < PCPJlog n, polylog n]

MAX-k-PCS gap problem:

—given:
« variables xi, X, ..., X, taking values from field F
* n=q" for some integer m
« k-ary constraints Cy, C,, ..., C,

— assignment viewed as f:(Fq)m - Fq

— YES: some degree d assignment satisfies all
constraints

—NO: no degree d assignment satisfies more
than (1-¢) fraction of constraints

May 25, 2023 CS151 Lecture 16

27

NP < PCPJ[log n, polylog n]

t = poly(n) k-ary constraints with k = polylog(n)
field size q = polylog(n)
n = g variables with m = O(log n / loglog n)
degree of assignments d = polylog(n)
 check: headed in right direction
— O(log n) random bits to pick a constraint

— query assignment in O(polylog(n)) locations to
determine if it is satisfied

— completeness 1; soundness 1- ¢
(if prover keeps promise to supply degree d polynomial)

May 25, 2023 CS151 Lecture 16

NP < PCPJlog n, polylog n]

* Proof of Lemma
—reduce from 3-SAT
— 3-CNF @(x1, X2,..., Xn)
—can encode as ¥:[n] x [n] x [n] x {0,1}3—{0,1}
= (i, iz, i3, by, by, b3) = 1 iff @ contains clause
(%0, 21V Xi,02 V X;03)

—e.g. (XaV =XsVx2) = 1(3,5,2,1,0,1) = 1

May 25, 2023 CS151 Lecture 16

29

30

NP < PCPJlog n, polylog n]

—pick H € F, with {0,1} € H, [H| = polylog n

— pick m = O(log n/loglog n) so |H|™=n

— identify [n] with H™

- :H™ x H™ x H™ x H3 — {0,1} encodes ¢

— assignment a:Hm — {0,1}

—Key: a satisfies @ iff Viy,iz,is,b1,b2,b3

ll)(i1,i2,i3,b1,b2,b3) =0or

a(i1)=b4 or a(iz)=b, or a(is)=bs

May 25, 2023 CS151 Lecture 16

NP < PCPJ[log n, polylog n]

:Hm™ x Hm x Hm x H3 — {0,1} encodes ¢
a satisfies @ iff Viy,iz,is,b1,b2,b3
Y(ir,iz,i3,b1,b2,b3) = 0 or a(i;)=b or a(i,)=b, or a(i;)=b;

—extend 1 to a function 1":(F4)*™*3 — Fq with
degree at most |H| in each variable

— can extend any assignment a:H™ —{0,1} to
a’(Fy)™ — Fq with degree |H| in each variable

May 25, 2023 CS151 Lecture 16

NP < PCPJlog n, polylog n]

Y':(Fq)3m*+3 —» Fq encodes @
a,:(Fq)m i Fq s.a. iff V(iq,iz,i3,b1,b2,b3) € H3m+3
Y (i1,iz,15,b1,b5,b5) = 0 or @'(i;)=b, or a'(i,)=b, or a’(is)=bs,

—define: p,:(Fq)*m*3 — F, from a’ as follows

Pa(i1,i2,i3,01,02,b3) =
P'(ir,2,3,01,02,05)(@(ir) - by)(@'(i2) - b2)(@'(is) - bs)
—a's.a.liffv (i1,i2,i3,b1,b2,b3) € H3m+3
Pa(i1,i2,3,01,05,b5) = 0

May 25, 2023 CS151 Lecture 16

31

32

33

