Cs151

Complexity
Theory

Lecture 15
May 23, 2023

Arthur-Merlin Games

* Delimiting # of rounds:

— AM[K] = Arthur-Merlin game with k rounds,
Arthur (verifier) goes first

— MA[K] = Arthur-Merlin game with k rounds,
Merlin (prover) goes first
Theorem: AM[k] (MA[k]) equals AM[k]
(MA[K]) with perfect completeness.
— i.e., x € L implies accept with probability 1
— proof on problem set

Arthur-Merlin Games

Theorem: for all constant k > 2
AM[k] = AM[2].
* Proof:
—we show MA[2] € AM[2]

—implies can move all of Arthur’'s messages to
beginning of interaction:

AMAMAM...AM = AAMMAM...AM
... =AAA.. AMMM...M

Arthur-Merlin Games

* Proof (continued):
—given L € MA[2]
XxeL=3amPr[x,mr)eR]=1
— =Pr[am(x,m,r) eR] =1
order reversed
— XéL=>vmPrx,mr)eR]<¢
=Pr[vm (x, m, r) € R] < 2Imlg

— by repeating t times with independent random
strings r, can make error € < 2
—sett=m+1 to get 2Ime < V.

May 23, 2023 CS151 Lecture 15

May 23, 2023 CS151 Lecture 15 May 23, 2023 CS151 Lecture 15
MA and AM MA and AM
» Two important classes: — L € AM iff 3 poly-time language R
— MA = MA[2] xeL=Pr[Im(x,mr)eR]=1
- AM = AM[2] Xx¢L=>Pr[am(x,mr)eR] <%

« definitions without reference to interaction:
— L e MAIff 3 poly-time language R
xeL=3ImPr[(x,mr)eR]=1
xgL=>vVmPr[(x,mr)eR]| <%
— L € AM iff 3 poly-time language R
xeL=Pr[Im(x,mr)eR]=1
xgL=>Pr[am((x,mr)eR] <%

May 23, 2023 CS151 Lecture 15

» Relation to other complexity classes:
— both contain NP (can elect to not use randomness)
— both contained in [,. L € [, iff 3 R € P for which:
xeL=Pr[Im(x,mr)eR]=1
x¢L=Pr[Im(x,mr)eR]<1
— so clear that AM < [,
— know that MA € AM

May 23, 2023 CS151 Lecture 15

MA and AM

T, b2
A‘M col\M
M‘A co‘MA
l\‘lP coI‘\IP

\P/

May 23, 2023 CS151 Lecture 15

Back to Graph Isomorphism

» The payoff:
—not known if Gl is NP-complete.
— previous Theorems:
if Gl is NP-complete then PH = AM
— unlikely!

— Proof: GI NP-complete = GNI coNP-complete
= coNP € AM = PH = AM

May 23, 2023 CS151 Lecture 15

MA and AM

Theorem: coNP € AM = PH = AM.
* Proof:
— suffices to show £, € AM (and use AM < IN,)
— L €%, iff 3 poly-time language R
XeEL=3yVvz(xy z)ER
x¢L=>vy3iz(xy z)¢R
— Merlin sends y

— 1 AM exchange decides coNP query: V z (x, y, zZ)eR ?
— 3 rounds; in AM

May 23, 2023 CS151 Lecture 15

MA and AM

* We know Arthur-Merlin = IP.
— “public coins = private coins”
Theorem (GS): IP[k] € AM[O(k)]
— stronger result
—implies for all constant k = 2,
IP[k] = AM[O(k)] = AM[2]

- So, GNI € IP[2] = AM

May 23, 2023 CS151 Lecture 15

8 9
MA and AM MA and AM
» Two important classes:
— MA = MA[2] T 2,
— AM = AM[2] | |
« definitions without reference to interaction: AM coAM

— L e MAIff 3 poly-time language R | |
xeL=3ImPr[(x,mr)eR]=1 MA coMA
xg¢L=>vmPr[(x,mr)eR] <" ‘ ‘

— L e AMiff 3 poly-time language R NP coNP
XEL=Pr[am(x mr)eR] =1 \P/
xgL=>Pr[am((x,mr)eR] <%

May 23, 2023 CS151 Lecture 15 May 23, 2023 CS151 Lecture 15

10

11

12

Derandomization revisited

» L € MAiff 3 poly-time language R A‘M
Xx€L=3ImPrf(x,m,r)eR]=1 MA
x¢L=>vmPr[(x,mr)ER] <% |

* Recall PRGs: NP

(seed} | 6 || outpursiring |

t bits u bits

— for all circuits C of size at most s:
[Pry[C(y) = 1] - Pr,[C(G(2)) = 1]| s €

May 23, 2023

CS151 Lecture 15

Using PRGs for MA

* L e MAiff 3 poly-time language R
xeL=3ImPr[x,m,r)eR]=1
xg¢L=>vmPr[(x,mr)eR] <%

* produce poly-size circuit C such that

C(x,m,r)=1& (xmr)eR
» for each x, m can hardwire to get Cxm
3 m Pry[Cym(y) =1]=1 (“yes”)
v mPr[Cim(y) =1]£1/2 (“no”)

May 23, 2023 CS151 Lecture 15

13

Using PRGs for MA
poly(n)
 can compute Pr,[Cyx m(G(z)) = 1] exactly
— evaluate C, n(G(z)) on every seed z € {0,1}t
—running time (O(|Cy m|)*(time for G))2t
x€L=3m[Pr[Cim(G(z) =1]=1]
x&L=Vm[Pr[Cin(G(2)=1]< % +¢]
— L € NP if PRG with t = O(log n), € < 1/2

Theorem: E requires exponential size
circuits = MA = NP.

May 23, 2023 CS151 Lecture 15

May 23,2023

MA and AM

(under a hardness assumption)

nz Zz

| |
A‘M CO‘AM
MA coMA

|/ N\
NP coNP
\ /
P

CS151 Lecture 15

16

14 15
MA and AM Derandomization revisited
(under a hardness assumption)))
Theorem (IW, STV): If E contains functions
1‘12 7:2 that require size 29" circuits, then E
i i Q) _yn-
AM boAM contalqs functions .thaF are 240 —un
approximable by circuits.
MA = NP CoNP = coMA Theo_rem (NW): if E contains 20(”)-un§pp—
~__— roximable functions there are poly-time
P PRGs fooling poly(n)-size circuits, with
What about AM, coAM? seed length t = O(log n), and error € < 1/4.
May 23, 2023 CS151 Lecture 15 May 23, 2023 CS151 Lecture 15
17 18

Oracle circuits

« circuit C //}'\
—directed acyclic graph v A
—nodes: AND (A); OR (V); TSN

NOT (=); variables x; A o7

P NP N
X; X2 X3 .. Xg
» A-oracle circuit C Hifxen
—also allow “A-oracle gates” A
FTTTTT
May 23, 2023 CS151 Lecture 15 X
19

Relativized versions

Theorem: If E contains functions that
require size 29 A-oracle circuits, then E
contains functions that are 29M -
unapproximable by A-oracle circuits.

» Recall proof:

— encode truth table to get hard function

— if approximable by s(n)-size circuits, then use
those circuits to compute original function by
size s(n)o(-size circuits. Contradiction.

May 23, 2023 CS151 Lecture 15

Relativized versions
/ £{0,1yos %~ {0,1}
m:|0[1(1|0|0|0 IV £{0,1}e" > {0,1}

encmy[0]1]1]0]0[0[1]0]0]0]O]1]0] [small A-oracle
circuit C

R: [o]@] 1]o[[o]1][o]o[ol@J 0] | approximating f

- P + |small A-oracle

\\ 1 circuit computing

procedure | | c : f exactly
et 140N 10|

May 23, 2023 CS151 Lecture 15

Relativized versions

Theorem: if E contains 2%M-unapp-
roximable fns., there are poly-time PRGs
fooling poly(n)-size A-oracle circuits, with
seed length t = O(log n), and error € < 1/4.
Recall proof:

— PRG from hard function on O(log n) bits

—if doesn’t fool s-size circuits, then use those
circuits to compute hard function by size s-n’-
size circuits. Contradiction.

May 23, 2023 CS151 Lecture 15

20

21

22

Relativized versions

Gn(y):f\og n(y\S1) o f\og n(yISZ) ©...0 f\og n(yISm)
fiogn: | 010100101111101010111001010 ‘

[]
—doesn’t fool A-oracle circuit of size s:
[Pr[C(x) = 1] = Pr,[C(Gn(y)) = 1]l > €
—implies A-oracle circuit P of size s’ ='s + O(m):
Pry[P(Gn(y)1...i1) = Ga(y)] > 2+ €/m

May 23, 2023 CS151 Lecture 15

Relativized versions

Gn(Y)=fiog n(Yis1) © flogn(Yisz) © -+ © fiog n(Yism)
fiognt | 010100101111101010111001010 ‘

IC\MI)

A-oracle circuit P
approximating f

LTI

May 23, 2023 cs151 Lecture 15 hardwired tables

23

24

Using PRGs for AM

L € AM iff 3 poly-time language R
xeEL=Pr[am(x,mr)eR]=1
xgL=>Pr[am(x mr)eR] <%

+ produce poly-size SAT-oracle circuit C

such that 1 SAT query, accepts iff answer is “yes”
C(x,r)=1e3Im(xmr)eR

« for each x, can hardwire to get Cy
Pry[Cx(y) = 1] =1 (“yes”)

Pry[Cuy) =117 (“no”)

May 23, 2023 CS151 Lecture 15

Using PRGs for AM

x € L= [Pr[Ci(G(z)) = 1]=1]
x &L= [Pr]CG(z) =11 < Vo + €]
» Cx makes a single SAT query, accepts iff
answer is “yes”

« if Gis a PRG with t = O(log n), € < %4, can
check in NP:
—does C«(G(z)) = 1 for all z?

May 23, 2023 CS151 Lecture 15

25

Relativized versions

Theorem: If E contains functions that require
size 22 A-oracle circuits, then E contains
functions that are 22 -unapproximable by A-
oracle circuits.

Theorem: if E contains 22(M-unapproximable
functions there are PRGs fooling poly(n)-size A-
oracle circuits, with seed length t = O(log n), and
error € < 5.

Theorem: E requires exponential size SAT-
oracle circuits = AM = NP.

May 23, 2023 CS151 Lecture 15

MA and AM
(under a hardness assumption)
nz Zz
N/
AM coAM
MA = NP coNP = coMA
\ /
P

May 23, 2023 CS151 Lecture 15

28

26 27
MA and AM New topic(s)
(under a hardness assumption)
. 2, . .
Optimization problems,
Approximation Algorithms,
and
AM= MA=NP coNP = coMA = coAM Probabilistically Checkable Proofs
\ /
[
29 30

May 23, 2023

Optimization Problems

many hard problems (especially NP-hard)
are optimization problems

—e.g. find shortest TSP tour

—e.g. find smallest vertex cover
—e.g. find largest clique

—may be minimization or maximization problem
— “opt” = value of optimal solution

CS151 Lecture 15

31

May 23,2023

Approximation Algorithms

Approximation algorithm for VC:

— pick an edge (x, y), add vertices x and y to VC
— discard edges incident to x or y; repeat.
Claim: approximation ratio is 2.

Proof:

—an optimal VC must include at least one
endpoint of each edge considered

— therefore 2*opt > actual

CS151 Lecture 15

34

Approximation Algorithms

often happy with approximately optimal
solution
—warning: lots of heuristics
— we want approximation algorithm with
guaranteed approximation ratio of r
— meaning: on every input x, output is
guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization

May 23, 2023 CS151 Lecture 15

Approximation Algorithms

» Example approximation algorithm:
—Recall:

Vertex Cover (VC): given a graph G, what is the

smallest subset of vertices that touch every
edge?

—NP-complete

May 23, 2023 CS151 Lecture 15

32

33

Approximation Algorithms

« diverse array of ratios achievable
* some examples:
— (min) Vertex Cover: 2

— MAX-3-SAT (find assignment satisfying
largest # clauses): 8/7

— (min) Set Cover: Inn
— (max) Clique: n/log2n
— (max) Knapsack: (1 + €) for any € > 0

May 23, 2023 CS151 Lecture 15

Approximation Algorithms

(max) Knapsack: (1 + €) forany € > 0

+ called Polynomial Time Approximation
Scheme (PTAS)

— algorithm runs in poly time for every fixed €>0
— poor dependence on ¢ allowed

If all NP optimization problems had a
PTAS, almost like P = NP (!)

May 23, 2023

CS151 Lecture 15

35

36

Approximation Algorithms

* A job for complexity: How to explain failure
to do better than ratios on previous slide?

— just like: how to explain failure to find poly-
time algorithm for SAT...

— first guess: probably NP-hard

—what is needed to show this?
“gap-producing” reduction from NP-
complete problem L1to Lz

May 23, 2023 CS151 Lecture 15

37
Gap producing reductions
no yes
nho rk Yes k
f f
es k o\ "o k/r
yes no
L1 Lz(min.) L1 Lz (max.
* Main purpose:
— r-approximation algorithm for L, distinguishes
between f(yes) and f(no); can use to decide L,
— “NP-hard to approximate to within r”
May 23, 2023 CS8151 Lecture 15

40

Ls

May 23, 2023

no

yes

Approximation Algorithms

« “gap-producing” reduction from NP-
complete problem Lito Lo

opt

Lz (min. problem)

CS151 Lecture 15

Gap producing reductions

r-gap-producing reduction:

— f computable in poly time

—X € Ly = opt(f(x)) < k

—Xx & Ly = opt(f(x)) > rk

— for max. problems use “> k” and “< k/r”
Note: target problem is not a language

— promise problem (yes U no not all strings)
— “promise”: instances always from (yes U no)

May 23, 2023

CS151 Lecture 15

38

39

Gap preserving reductions

 gap-producing reduction difficult (more later)
* but gap-preserving reductions easier

Warning: many
reductions not
gap-preserving

May 23, 2023

yes
yes r'k
rk
f K
k no
no i
L (min.) L. (mm.)

CS151 Lecture 15

Gap preserving reductions

Example gap-preserving reduction:
—reduce MAX-k-SAT with gap e +—_
constants
—to MAX-3-SAT with gap €’
—*MAX-k-SAT is NP-hard to approx. within € =
MAX-3-SAT is NP-hard to approx. within € ”
MAXSNP (PY) — a class of problems
reducible to each other in this way
— PTAS for MAXSNP-complete problem iff
PTAS for all problems in MAXSNP

May 23, 2023

CS151 Lecture 15

41

42

MAX-k-SAT

* Missing link: first gap-producing reduction
— history’s guide

it should have something to do with SAT
Definition: MAX-k-SAT with gap €
—instance: k-CNF ¢
— YES: some assignment satisfies all clauses

—NO: no assignment satisfies more than (1 —¢€)
fraction of clauses

May 23, 2023 CS151 Lecture 15

43

Proof systems viewpoint

« can think of reduction showing k-SAT NP-hard
as designing a proof system for NP in which:
— verifier only performs local tests

.

can think of reduction showing “MAX-k-SAT with

gap €” NP-hard as designing a proof system for

NP in which:

— verifier only performs local tests

— invalidity of proof* evident all over: “holographic
proof” and an e fraction of tests notice such invalidity

May 23, 2023 CS151 Lecture 15

46

Proof systems viewpoint

* k-SAT NP-hard = for any language LENP
proof system of form:
— given x, compute reduction to k-SAT: ¢y
— expected proof is satisfying assignment for ¢y

— verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x € L = Prverifier accepts] = 1
x & L = Pr|verifier accepts] < 1

May 23, 2023

CS151 Lecture 15

Proof systems viewpoint

* MAX-k-SAT with gap € NP-hard = for any
language L € NP proof system of form:
— given x, compute reduction to MAX-k-SAT: ¢x
— expected proof is satisfying assignment for ¢y
— verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x € L = Pr{verifier accepts] = 1

x & L = Pr{verifier accepts] < (1 —¢)
— can repeat O(1/¢) times for error < %2

May 23, 2023 CS151 Lecture 15

44

45

