
1

Lecture 15
May 23, 2023

1

May 23, 2023

Arthur-Merlin Games

• Delimiting # of rounds:
– AM[k] = Arthur-Merlin game with k rounds,

Arthur (verifier) goes first
– MA[k] = Arthur-Merlin game with k rounds,

Merlin (prover) goes first
Theorem: AM[k] (MA[k]) equals AM[k]

(MA[k]) with perfect completeness.
– i.e., x ∈ L implies accept with probability 1
– proof on problem set

CS151 Lecture 15

2

May 23, 2023

Arthur-Merlin Games

Theorem: for all constant k ≥ 2
AM[k] = AM[2].

• Proof:
– we show MA[2] ⊆ AM[2]
– implies can move all of Arthur’s messages to

beginning of interaction:
AMAMAM…AM = AAMMAM…AM

… = AAA…AMMM…M

CS151 Lecture 15

3

May 23, 2023

Arthur-Merlin Games

• Proof (continued):
– given L ∈ MA[2]

x ∈ L ⇒ ∃m Prr[(x, m, r) ∈ R] = 1
⇒Prr[∃m (x, m, r) ∈ R] = 1

x ∉ L ⇒ ∀m Prr[(x, m, r) ∈ R] ≤ ε
⇒Prr[∀m (x, m, r) ∈ R] ≤ 2|m|ε

– by repeating t times with independent random
strings r, can make error ε < 2-t

– set t = m+1 to get 2|m|ε < ½.

order reversed

CS151 Lecture 15

4

May 23, 2023

MA and AM
• Two important classes:

– MA = MA[2]
– AM = AM[2]

• definitions without reference to interaction:
– L ∈ MA iff ∃ poly-time language R

x ∈ L ⇒ ∃ m Prr[(x, m, r) ∈ R] = 1
x ∉ L ⇒∀ m Prr[(x, m, r) ∈ R] ≤½

– L ∈ AM iff ∃ poly-time language R
x ∈ L ⇒ Prr[∃ m (x, m, r) ∈R] = 1
x ∉ L ⇒ Prr[∃ m (x, m, r) ∈ R] ≤½

CS151 Lecture 15

5

May 23, 2023

MA and AM
– L ∈ AM iff ∃ poly-time language R

x ∈ L ⇒ Prr[∃m (x, m, r) ∈R] = 1
x ∉ L ⇒ Prr[∃m (x, m, r) ∈ R] ≤½

• Relation to other complexity classes:
– both contain NP (can elect to not use randomness)
– both contained in ∏2. L ∈∏2 iff ∃ R ∈ P for which:

x ∈ L ⇒ Prr[∃m (x, m, r) ∈R] = 1
x ∉ L ⇒ Prr[∃m (x, m, r) ∈ R]< 1

– so clear that AM⊆∏2

– know that MA ⊆ AM
CS151 Lecture 15

6

2

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

AM coAM

MA coMA

CS151 Lecture 15

7

May 23, 2023

MA and AM
Theorem: coNP ⊆ AM ⇒ PH = AM.
• Proof:

– suffices to show Σ2 ⊆ AM (and use AM ⊆ Π2)
– L ∈Σ2 iff ∃ poly-time language R

x ∈ L ⇒ ∃ y ∀ z (x, y, z) ∈ R
x ∉ L ⇒∀ y ∃ z (x, y, z) ∉ R

– Merlin sends y
– 1 AM exchange decides coNP query: ∀ z (x, y, z)∈R ?
– 3 rounds; in AM

CS151 Lecture 15

8

May 23, 2023

MA and AM

• We know Arthur-Merlin = IP.
– “public coins = private coins”

Theorem (GS): IP[k] ⊆ AM[O(k)]
– stronger result
– implies for all constant k ≥ 2,

IP[k] = AM[O(k)] = AM[2]

• So, GNI ∈ IP[2] = AM
CS151 Lecture 15

9

May 23, 2023

Back to Graph Isomorphism

• The payoff:
– not known if GI is NP-complete.
– previous Theorems:

if GI is NP-complete then PH = AM
– unlikely!

– Proof: GI NP-complete ⇒ GNI coNP-complete
⇒ coNP ⊆ AM ⇒ PH = AM

CS151 Lecture 15

10

May 23, 2023

MA and AM
• Two important classes:

– MA = MA[2]
– AM = AM[2]

• definitions without reference to interaction:
– L ∈ MA iff ∃ poly-time language R

x ∈ L ⇒ ∃ m Prr[(x, m, r) ∈ R] = 1
x ∉ L ⇒∀ m Prr[(x, m, r) ∈ R] ≤½

– L ∈ AM iff ∃ poly-time language R
x ∈ L ⇒ Prr[∃ m (x, m, r) ∈R] = 1
x ∉ L ⇒ Prr[∃ m (x, m, r) ∈ R] ≤½

CS151 Lecture 15

11

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

AM coAM

MA coMA

CS151 Lecture 15

12

3

Derandomization revisited

• L ∈ MA iff ∃ poly-time language R
x ∈ L ⇒ ∃ m Prr[(x, m, r) ∈R] = 1
x ∉ L ⇒ ∀ m Prr[(x, m, r) ∈R] ≤½

• Recall PRGs:

– for all circuits C of size at most s:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| ≤ ε
May 23, 2023

NP

AM

MA

seed output stringG
t bits u bits

CS151 Lecture 15

13

Using PRGs for MA

• L ∈ MA iff ∃ poly-time language R
x ∈ L ⇒ ∃ m Prr[(x, m, r) ∈R] = 1
x ∉ L ⇒ ∀ m Prr[(x, m, r) ∈R] ≤½

• produce poly-size circuit C such that
C(x, m, r) = 1 ⇔ (x,m,r) ∈ R

• for each x, m can hardwire to get Cx,m
∃ m Pry[Cx,m(y) = 1] = 1 (“yes”)
∀ m Pry[Cx,m(y) = 1] ≤ 1/2 (“no”)

May 23, 2023 CS151 Lecture 15

14

Using PRGs for MA

• can compute Prz[Cx,m(G(z)) = 1] exactly
– evaluate Cx,m(G(z)) on every seed z ∈ {0,1}t

– running time (O(|Cx,m|)+(time for G))2t

x ∈ L ⇒ ∃ m [Prz[Cx,m(G(z)) = 1] = 1]
x ∉ L ⇒ ∀ m [Prz[Cx,m(G(z)) = 1] ≤ ½ + 𝜖]

– L ∈ NP if PRG with t = O(log n), 𝜖 < 1/2
Theorem: E requires exponential size

circuits ⇒ MA = NP.
May 23, 2023

poly(n)

poly-time

CS151 Lecture 15

15

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

AM coAM

MA coMA

(under a hardness assumption)

CS151 Lecture 15

16

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

AM coAM

MA = = coMA

(under a hardness assumption)

What about AM, coAM?
CS151 Lecture 15

17

May 23, 2023

Derandomization revisited

Theorem (IW, STV): If E contains functions
that require size 2Ω(n) circuits, then E
contains functions that are 2Ω(n) –un-
approximable by circuits.

Theorem (NW): if E contains 2Ω(n)-unapp-
roximable functions there are poly-time
PRGs fooling poly(n)-size circuits, with
seed length t = O(log n), and error 𝜖 < 1/4.

CS151 Lecture 15

18

4

May 23, 2023

Oracle circuits

• A-oracle circuit C
– also allow “A-oracle gates”

• circuit C
– directed acyclic graph
– nodes: AND (∧); OR (∨);

NOT (¬); variables xi

∨

∧

x1 x2

∧

∨ ¬

x3 … xn

∧

A

1 iff x ∈ A

xCS151 Lecture 15

19

May 23, 2023

Relativized versions

Theorem: If E contains functions that
require size 2Ω(n) A-oracle circuits, then E
contains functions that are 2Ω(n) -
unapproximable by A-oracle circuits.

• Recall proof:
– encode truth table to get hard function
– if approximable by s(n)-size circuits, then use

those circuits to compute original function by
size s(n)O(1)-size circuits. Contradiction.

CS151 Lecture 15

20

May 23, 2023

Relativized versions

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0

0 1 1 00 0 1 0R: 0 10 0 0

D
C

f:{0,1}log k → {0,1}

f ’:{0,1}log n → {0,1}

small A-oracle
circuit C

approximating f’

decoding
procedure

i ∈ {0,1}log k

small A-oracle
circuit computing
f exactly

f(i)
CS151 Lecture 15

21

May 23, 2023

Relativized versions

Theorem: if E contains 2Ω(n)-unapp-
roximable fns., there are poly-time PRGs
fooling poly(n)-size A-oracle circuits, with
seed length t = O(log n), and error 𝜖 < 1/4.

• Recall proof:
– PRG from hard function on O(log n) bits
– if doesn’t fool s-size circuits, then use those

circuits to compute hard function by size s⋅n𝛿-
size circuits. Contradiction.

CS151 Lecture 15

22

Relativized versions

May 23, 2023

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

– doesn’t fool A-oracle circuit of size s:
|Prx[C(x) = 1] – Pry[C(Gn(y)) = 1]| > ε

– implies A-oracle circuit P of size s’ = s + O(m):
Pry[P(Gn(y)1…i-1) = Gn(y)i] > ½ + ε/m

CS151 Lecture 15

23

Relativized versions

May 23, 2023

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

P

output
flog n(y ’)

hardwired tables

y’

A-oracle circuit
approximating f

CS151 Lecture 15

24

5

Using PRGs for AM

L ∈ AM iff ∃ poly-time language R
x ∈ L ⇒ Prr[∃m (x, m, r) ∈R] = 1
x ∉ L ⇒ Prr[∃m (x, m, r) ∈ R] ≤½

• produce poly-size SAT-oracle circuit C
such that

C(x, r) = 1 ⇔∃ m (x,m,r) ∈ R
• for each x, can hardwire to get Cx

Pry[Cx(y) = 1] = 1 (“yes”)
Pry[Cx(y) = 1] ≤ ½ (“no”)

May 23, 2023

1 SAT query, accepts iff answer is “yes”

CS151 Lecture 15

25

Using PRGs for AM

x ∈ L ⇒ [Prz[Cx(G(z)) = 1] = 1]
x ∉ L ⇒ [Prz[Cx(G(z)) = 1] ≤ ½ + 𝜖]

• Cx makes a single SAT query, accepts iff
answer is “yes”

• if G is a PRG with t = O(log n), 𝜖 < ¼, can
check in NP:
– does Cx(G(z)) = 1 for all z?

May 23, 2023 CS151 Lecture 15

26

May 23, 2023

Relativized versions
Theorem: If E contains functions that require

size 2Ω(n) A-oracle circuits, then E contains
functions that are 2Ω(n) -unapproximable by A-
oracle circuits.

Theorem: if E contains 2Ω(n)-unapproximable
functions there are PRGs fooling poly(n)-size A-
oracle circuits, with seed length t = O(log n), and
error 𝜖 < ½.

Theorem: E requires exponential size SAT-
oracle circuits ⇒AM = NP.

CS151 Lecture 15

27

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

MA = = coMA

(under a hardness assumption)

coAMAM

CS151 Lecture 15

28

May 23, 2023

MA and AM

P

NP coNP

Σ2Π2

MA = = coMA

(under a hardness assumption)

= coAMAM =

CS151 Lecture 15

29

May 23, 2023

New topic(s)

Optimization problems,
Approximation Algorithms,

and
Probabilistically Checkable Proofs

CS151 Lecture 15

30

6

May 23, 2023

Optimization Problems

• many hard problems (especially NP-hard)
are optimization problems
– e.g. find shortest TSP tour
– e.g. find smallest vertex cover
– e.g. find largest clique

– may be minimization or maximization problem
– “opt” = value of optimal solution

CS151 Lecture 15

31

May 23, 2023

Approximation Algorithms

• often happy with approximately optimal
solution
– warning: lots of heuristics
– we want approximation algorithm with

guaranteed approximation ratio of r
– meaning: on every input x, output is

guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization

CS151 Lecture 15

32

May 23, 2023

Approximation Algorithms

• Example approximation algorithm:
– Recall:

Vertex Cover (VC): given a graph G, what is the
smallest subset of vertices that touch every
edge?

– NP-complete

CS151 Lecture 15

33

May 23, 2023

Approximation Algorithms

• Approximation algorithm for VC:
– pick an edge (x, y), add vertices x and y to VC
– discard edges incident to x or y; repeat.

• Claim: approximation ratio is 2.
• Proof:

– an optimal VC must include at least one
endpoint of each edge considered

– therefore 2*opt ≥ actual

CS151 Lecture 15

34

May 23, 2023

Approximation Algorithms

• diverse array of ratios achievable
• some examples:

– (min) Vertex Cover: 2
– MAX-3-SAT (find assignment satisfying

largest # clauses): 8/7
– (min) Set Cover: ln n
– (max) Clique: n/log2n
– (max) Knapsack: (1 + ε) for any ε > 0

CS151 Lecture 15

35

May 23, 2023

Approximation Algorithms

(max) Knapsack: (1 + ε) for any ε > 0

• called Polynomial Time Approximation
Scheme (PTAS)
– algorithm runs in poly time for every fixed ε>0
– poor dependence on ε allowed

• If all NP optimization problems had a
PTAS, almost like P = NP (!)

CS151 Lecture 15

36

7

May 23, 2023

Approximation Algorithms

• A job for complexity: How to explain failure
to do better than ratios on previous slide?
– just like: how to explain failure to find poly-

time algorithm for SAT...
– first guess: probably NP-hard
– what is needed to show this?

• “gap-producing” reduction from NP-
complete problem L1 to L2

CS151 Lecture 15

37

May 23, 2023

Approximation Algorithms

• “gap-producing” reduction from NP-
complete problem L1 to L2

no

yes
L1

L2 (min. problem)

f opt
k

rk

CS151 Lecture 15

38

May 23, 2023

Gap producing reductions

• r-gap-producing reduction:
– f computable in poly time
– x ∈ L1 ⇒ opt(f(x)) ≤ k
– x ∉ L1 ⇒ opt(f(x)) > rk
– for max. problems use “≥ k” and “< k/r”

• Note: target problem is not a language
– promise problem (yes ∪ no not all strings)
– “promise”: instances always from (yes ∪ no)

CS151 Lecture 15

39

May 23, 2023

Gap producing reductions

• Main purpose:
– r-approximation algorithm for L2 distinguishes

between f(yes) and f(no); can use to decide L1

– “NP-hard to approximate to within r”

no

yes

L1

f
k

rk yes

no

L1

f
k/r

k

L2 (min.) L2 (max.)
yes

no yes

no

CS151 Lecture 15

40

May 23, 2023

Gap preserving reductions

• gap-producing reduction difficult (more later)

• but gap-preserving reductions easier

f
k

rk
k’

r’k’Warning: many
reductions not
gap-preserving

yes

no

yes

no

L1 (min.)
L2 (min.)

CS151 Lecture 15

41

May 23, 2023

Gap preserving reductions

• Example gap-preserving reduction:
– reduce MAX-k-SAT with gap ε
– to MAX-3-SAT with gap ε’
– “MAX-k-SAT is NP-hard to approx. within ε ⇒

MAX-3-SAT is NP-hard to approx. within ε’ ”
• MAXSNP (PY) – a class of problems

reducible to each other in this way
– PTAS for MAXSNP-complete problem iff

PTAS for all problems in MAXSNP

constants

CS151 Lecture 15

42

8

May 23, 2023

MAX-k-SAT

• Missing link: first gap-producing reduction
– history’s guide

it should have something to do with SAT

• Definition: MAX-k-SAT with gap ε
– instance: k-CNF φ
– YES: some assignment satisfies all clauses
– NO: no assignment satisfies more than (1 – ε)

fraction of clauses

CS151 Lecture 15

43

May 23, 2023

Proof systems viewpoint

• k-SAT NP-hard ⇒ for any language L∈NP
proof system of form:
– given x, compute reduction to k-SAT: 𝜙x

– expected proof is satisfying assignment for 𝜙x

– verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x ∈ L ⇒ Pr[verifier accepts] = 1
x ∉ L ⇒ Pr[verifier accepts] < 1

CS151 Lecture 15

44

May 23, 2023

Proof systems viewpoint

• MAX-k-SAT with gap ε NP-hard ⇒ for any
language L ∈ NP proof system of form:
– given x, compute reduction to MAX-k-SAT: 𝜙x

– expected proof is satisfying assignment for 𝜙x

– verifier picks random clause (“local test”) and
checks that it is satisfied by the assignment

x ∈ L ⇒ Pr[verifier accepts] = 1
x ∉ L ⇒ Pr[verifier accepts] ≤ (1 – ε)

– can repeat O(1/ε) times for error < ½

CS151 Lecture 15

45

May 23, 2023

Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard
as designing a proof system for NP in which:
– verifier only performs local tests

• can think of reduction showing “MAX-k-SAT with
gap ε” NP-hard as designing a proof system for
NP in which:
– verifier only performs local tests
– invalidity of proof* evident all over: “holographic

proof” and an 𝜖 fraction of tests notice such invalidity
CS151 Lecture 15

46

