

2

5

Interactive Proofs

interactive proof system for L is an interactive protocol (P, V)
– completeness: x ∈ L ⇒ Pr[V accepts in (P, V)(x)] ≥ 2/3
– soundness: x ∉ L ⇒ ∀ P* Pr[V accepts in (P*, V)(x)] ≤ 1/3
– efficiency: V is p.p.t. machine
IP = {L : L has an interactive proof system}

1

GNI in IP • interactive proof system for GNI: input: (G₀, G₁) Verifier Prover $H = \pi(G_c)$ flip coin if $H \simeq G_0$ c ∈ {0,1}; pick r = 0,random π else r = 1accept iff r'= c CS151 Lecture 14 May 18, 2023

GNI in **IP**

• completeness:

- if G_0 not isomorphic to G_1 then H is isomorphic to exactly one of (G_0, G_1)
- prover will choose correct r
- soundness:
 - if $G_0\simeq G_1$ then prover sees same distribution on H for c = 0, c = 1
 - no information on $c \Rightarrow any$ prover P* can succeed with probability at most 1/2

May 18, 2023 CS151 Lecture 14

4

The power of IP
Solution to problem (ideas):

replace {0,1}ⁿ with (F_q)ⁿ
verifier substitutes random field element at each step
vast majority of field elements catch cheating prover (rather than just 1)

Theorem: L = { (φ, k): CNF φ has exactly k satisfying assignments} is in IP

CS151 Lecture 14

May 18, 2023

 $\begin{array}{l} \textbf{First step: arithmetization} \\ \textbf{- transform } \phi(x_1, \ldots, x_n) \text{ into polynomial } p_\phi(x_1, x_2, \ldots, x_n) \\ \textbf{of degree d over a field } F_q; q \text{ prime } > 2^n \\ \textbf{- recursively:} \\ \textbf{\cdot} x_i \rightarrow x_i \qquad -q\phi \rightarrow (1 - p_\phi) \\ \textbf{\cdot} \phi \land \phi' \rightarrow (p_\phi)(p_{\phi'}) \\ \textbf{\cdot} \phi \lor \phi' \rightarrow 1 - (1 - p_\phi)(1 - p_{\phi'}) \\ \textbf{- for all } x \in \{0, 1\}^n \text{ we have } p_\phi(x) = \phi(x) \\ \textbf{- degree } d \leq |\phi| \\ \textbf{- can compute } p_\phi(x) \text{ in poly time from } \phi \text{ and } x \\ \end{array}$

The power of **IP**

prover serios. k_z for all 2 ∈ F_q
verifier:

- checks that $k_0 + k_1 = k$

- sends random $z \in F_{\alpha}$

• continue with proof that

 $k_z = \sum_{x_2 = 0,1} \cdots \sum_{x_n = 0,1} p_{\varphi}(z, x_2, ..., x_n)$

· at end: verifier checks for itself

May 18, 2023 CS151 Lecture 14

10

11

The QSAT protocol			
$\frac{\text{Prover}}{k, q, p_1(x)}$	Verifier		
p1(x): remove outer Σ or \prod from p_{φ} p2(x): remove outer Σ or \prod from	z_1 pi(0)+pi(1) = k? or pi(0)pi(1) = k? pick random zi in F _q		
p _v [xi←zi] p ₂ (x)	p:(0)+p:(1)=pi(zi)? or z ₂ p:(0)p:(1) = pi(zi)?		
p ₃ (x): remove outer Σ or \prod from p _{φ} [x ₁ \leftarrow z ₁ , x ₂ \leftarrow z ₂]	pick random z_2 in F_9		
p₃(x)	$p_n(0)+p_n(1)=p_{n-1}(z_{n-1})?$ or		
p"(×)	$\begin{array}{l} p_n(0)p_n(1) = p_{n-1}(z_{n-1}) \\ p_ick \ random \ z_n \ in \ F_q \\ p_n(z_n) = p_{\phi}[x_1 \leftarrow z_1,, \ x_n \leftarrow z_n] \end{array}$		
May 18, 2023 CS151 Lecture	14		

Example			
φ =∀x∃y(x∨y)∧ ∀z((x∧z)∨(y∧ ¬z))∨	∃w(z∨(y∧ ¬w))	
$p_{\phi} = \prod_{x=0,1}$	$\Sigma_{y=0,1}[(x + y) * \prod_{z=0,1}[(x + y) + \prod_{z=0,1}](x + y)]$		Ro
	$\sum_{w=0,1} (z + y(1-w))$		
p _φ [x ←9] =	$\sum_{y=0,1} [(9 + y) * \prod_{z=0,1} [(9 + y) + y(1 - w))]$		-
			-
May 18, 2023	CS151 Lecture 14		May 18
29			30

Example

Arthur-Merlin Games
IP permits verifier to keep coin-flips private

necessary feature?
GNI protocol breaks without it

Arthur-Merlin game: interactive protocol in which coin-flips are public

Arthur (verifier) may as well just send results of coin-flips and ask Merlin (prover) to perform any computation Arthur would have done

Arthur-Merlin Games

- Clearly Arthur-Merlin ⊆ IP

 "private coins are at least as powerful as public coins"
- Proof that IP = PSPACE actually shows
 PSPACE ⊆ Arthur-Merlin ⊆ IP = PSPACE
 - "public coins are at least as powerful as private coins" !

May 18, 2023 CS151 Lecture 14

34

35

