

1

Interactive Proofs

- interactive proof system for L is an interactive protocol (P, V)
- completeness: $x \in L \Rightarrow$
$\operatorname{Pr}[V$ accepts in $(P, V)(x)] \geq 2 / 3$
- soundness: $x \notin L \Rightarrow \forall P^{*}$
$\operatorname{Pr}\left[\mathrm{V}\right.$ accepts in $\left.\left(\mathrm{P}^{*}, \mathrm{~V}\right)(\mathrm{x})\right] \leq 1 / 3$
- efficiency: V is p.p.t. machine
- $\mathrm{IP}=\{\mathrm{L}: \mathrm{L}$ has an interactive proof system $\}$

May 18,2023
CS151 Lecture 14
2

4

[^0]

Graph Isomorphism

- graphs $G_{0}=\left(V, E_{0}\right)$ and $G_{1}=\left(V, E_{1}\right)$ are isomorphic $\left(\mathrm{G}_{0} \simeq \mathrm{G}_{1}\right)$ if exists a
permutation $\pi: V \rightarrow V$ for which
$(x, y) \in E_{0} \Leftrightarrow(\pi(x), \pi(y)) \in E_{1}$

May 18,2023
CS151 Lecture 14
3

GNI in IP

- completeness:
- if G_{0} not isomorphic to G_{1} then H is isomorphic to exactly one of $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)$
- prover will choose correct r
- soundness:
- if $G_{0} \simeq G_{1}$ then prover sees same distribution on H for $\mathrm{c}=0, \mathrm{c}=1$
- no information on $c \Rightarrow$ any prover P^{*} can succeed with probability at most $1 / 2$
May 18,2023
CS151 Lecture 14
6

The power of IP

- We showed GNI $\in \operatorname{IP}$
- GNI \in IP suggests IP more powerful than NP, since we don't know how to show GN in NP
- GNI in coNP

Theorem (LFKN): coNP $\subseteq \mathbf{I P}$

May 18,2023
CS151 Lecture 14

7

The power of IP

- Proof idea: input: $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- prover: "I claim φ has k satisfying assignments"
- true iff
$\varphi\left(0, x_{2}, \ldots, x_{n}\right)$ has ko satisfying assignments
$\varphi\left(1, x_{2}, \ldots, x_{n}\right)$ has k_{1} satisfying assignments
k-ko ${ }^{\text {k }}$
- prover sends k_{0}, k^{2}
- verifier sends random $c \in\{0,1\}$
- prover recursively proves " φ ' $=\varphi\left(c, x_{2}, \ldots, x_{n}\right)$ has k_{c} satisfying assignments"
- at end, verifier can check for itself.

May 18,2023
CS151 Lecture 14

8

The power of IP

- Analysis of proof idea:
- Completeness: $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has k satisfying assignments \Rightarrow accept with prob. 1
- Soundness: $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ does not have k satisfying assigns. \Rightarrow accept prob. $\leq 1-2^{-n}$
- Why? It is possible that k is only off by one; verifier only catches prover if coin flips c are successive bits of this assignment

May 18,2023
CS151 Lecture 14
9

The power of IP

- Solution to problem (ideas):
- replace $\{0,1\}^{\mathrm{n}}$ with $\left(\mathrm{F}_{\mathrm{q}}\right)^{\text {n }}$
- verifier substitutes random field element at each step
- vast majority of field elements catch cheating prover (rather than just 1)

Theorem: $\mathrm{L}=\{(\varphi, \mathrm{k})$: CNF φ has exactly k satisfying assignments is in IP

May 18,2023
CS151 Lecture 14

The power of IP

- First step: arithmetization
- transform $\varphi\left(x_{1}, \ldots x_{n}\right)$ into polynomial $p_{\varphi}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ of degree d over a field F_{q}; q prime $>2^{n}$
- recursively:

$$
\cdot x_{i} \rightarrow x_{i} \quad \neg \varphi \rightarrow\left(1-p_{\varphi}\right)
$$

- $\varphi \wedge \varphi^{\prime} \rightarrow\left(p_{\varphi}\right)\left(p_{\varphi^{\prime}}\right)$
- $\varphi \vee \varphi^{\prime} \rightarrow 1-\left(1-p_{\varphi}\right)\left(1-p_{\varphi^{\prime}}\right)$
- for all $x \in\{0,1\}^{n}$ we have $p_{\varphi}(x)=\varphi(x)$
- can compute $p_{\varphi}(x)$ in poly time from φ and x

May 18, 2023 CS151 Leeture 14
11

The power of IP

- Prover wishes to prove:
$k=\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} p_{\phi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Define: $k_{z}=\sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)$
- prover sends: k_{z} for all $z \in F_{q}$
- verifier:
- checks that $k_{0}+k_{1}=k$
- sends random $z \in F_{q}$
- continue with proof that

$$
k_{z}=\sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)
$$

- at end: verifier checks for itself

May 18,2023
CS151 Lecture 14
12

The power of IP

- Prover wishes to prove:

$$
k=\Sigma x_{1}=0,1 x_{2}=0,1 \cdots x_{n}=0,1 p_{\varphi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Define: $k_{z}=\Sigma x_{2}=0,1 \cdots \sum x_{n}=0,1 p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)$
- a problem: can't send k_{z} for all $z \in F_{q}$
- solution: send the polynomial !
- recall degree $\mathrm{d} \leq|\varphi|$

May 18,2023
CS151 Lecture 14

13

14

Analysis of protocol

- Completeness:
- if $(\varphi, k) \in L$ then honest prover on previous slide will always cause verifier to accept

May 18, 2023 CS151 Lecture 14

15

Analysis of protocol

- Soundness:
- let $p_{i}(x)$ be the correct polynomials
- let $p_{1}^{*}(x)$ be the polynomials sent by (cheating) prover
$-(\varphi, k) \notin L \Rightarrow p_{1}(0)+p_{1}(1) \neq k$
- either $p_{1}{ }^{*}(0)+p_{1}{ }^{*}(1) \neq k$
(and V rejects)
- or $p_{1}{ }^{*} \neq p_{1} \Rightarrow \operatorname{Pr}_{1}\left[p_{1}{ }^{*}\left(z_{1}\right)=p_{1}\left(z_{1}\right)\right] \leq d / q \leq|\varphi| / 2^{n}$
- assume $\left(p_{i+1}(0)+p_{i+1}(1)=\right) p_{i}\left(z_{i}\right) \neq p_{i}^{*}\left(z_{i}\right)$
- either $p_{i+1}^{*}(0)+p_{i+1}{ }^{*}(1) \neq p_{i}^{*}\left(z_{i}\right) \quad$ (and V rejects)
- or $p_{i+1}{ }^{*} \neq p_{i+1} \Rightarrow \operatorname{Pr}_{\mathrm{z}_{\mathrm{i}+1}}\left[p_{\mathrm{i}+1}{ }^{*}\left(\mathrm{z}_{\mathrm{i}+1}\right)=\mathrm{p}_{\mathrm{i}+1}\left(\mathrm{z}_{\mathrm{i}+1}\right)\right] \leq|\varphi| / 2^{n}$

May 18,2023
CS151 Lecture 14
16

Analysis of protocol

- Soundness (continued):
- if verifier does not reject, there must be some i for which:

$$
\mathrm{p}_{\mathrm{i}}^{*} \neq \mathrm{p}_{\mathrm{i}} \text { and yet } \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)
$$

- for each i, probability is $\leq|\varphi| / 2^{n}$
- union bound: probability that there exists an i for which the bad event occurs is
$\leq n|\varphi| / 2^{n} \leq \operatorname{poly}(n) / 2^{n} \ll 1 / 3$

May 18,2023
CS151 Lecture 14
17

Analysis of protocol

- Conclude: $\mathrm{L}=\{(\varphi, \mathrm{k})$: CNF φ has exactly k satisfying assignments $\}$ is in IP
- L is coNP-hard, so coNP $\subseteq \mathrm{IP}$
- Question remains:
- NP, coNP $\subseteq I P$. Potentially larger. How much larger?

May 18, 2023
CS151 Lecture 14
18

IP = PSPACE

Theorem: (Shamir) IP = PSPACE - Note: IP \subseteq PSPACE

- enumerate all possible interactions, explicitly calculate acceptance probability
- interaction extremely powerful !
- An implication: you can interact with master player of Generalized Geography and determine if she can win from the current configuration even if you do not have the power to compute optimal moves!

May 18,2023
CS151 Lecture 14
19

$\mathrm{IP}=\mathrm{PSPACE}$

- quantified Boolean expression φ is true if and only if $p_{\varphi}>0$
- Problem: Π^{\prime} s may cause $p_{\varphi}>2^{2^{|\varphi|}}$
- Solution: evaluate mod $2^{n} \leq q \leq 2^{3 n}$
- prover sends "good" q in first round
- "good" q is one for which $p_{\varphi} \bmod q>0$
- Claim: good q exists
- \# primes in range is at least 2^{n}

May 18,2023
CS151 Lecture 14

$$
\mathrm{p}_{1}(\mathrm{x}) \text { : remove outer } \Sigma \text { or } \Pi \text { from } p_{\varphi}
$$

23
$z_{1} p_{1}(0)+p_{1}(1)=k$?
$p_{2}(x)$: remove outer $\Sigma \Pi$ from $p_{1}(0) p_{1}(1)=k$
 $p_{2}(0)+p_{2}(1)=p_{1}\left(z_{1}\right)$? or $p_{2}(0) p_{2}(1)=p_{1}\left(z_{1}\right) ?$
$\mathrm{p}_{3}(x)$: remove outer Σ or Π from
$p_{\varphi}\left[x_{1} \leftarrow z 1, x_{2} \leftarrow z_{2}\right]$

$p_{n}(0)+p_{n}(1)=p_{n-1}(2 n-1)$? or $p_{n}(0) p_{n}(1)=p_{n-1}\left(Z_{n-1}\right)$? pick random Zn_{n} in F_{q}
May 18,2023
CS151 Lecture 14

Analysis of the QSAT protocol

- Completeness:
- if $\varphi \in$ QSAT then honest prover on previous slide will always cause verifier to accept

$\mathrm{IP}=\mathrm{PSPACE}$

- need to prove PSPACE \subseteq IP

21
 IP = PSPACE
 \section*{IP = PSPACE}
 \section*{IP = PSPACE}

- protocol for QSAT
- arithmetization step produces arithmetic expression p_{φ} :

$$
\cdot\left(\exists x_{i}\right) \varphi \rightarrow \sum_{x_{i}=0,1} p_{\varphi}
$$

$$
\text { - }\left(\forall x_{\mathrm{i}}\right) \varphi \rightarrow \prod_{\mathrm{x}_{\mathrm{i}}=0,1} \mathrm{p}_{\varphi}
$$

- start with QSAT formula in special form ("simple")
- no occurrence of x_{i} separated by more than one " \exists " from point of quantification
May 18,2023 CS151 Lecture 14
- use same type of protocol as for coNP

Analysis of the QSAT protocol

- Soundness:
- let $p_{i}(x)$ be the correct polynomials
- let $p_{i}^{*}(x)$ be the polynomials sent by (cheating) prover
$-\varphi \notin$ QSAT $\Rightarrow 0=p_{1}(0)+/ x p_{1}(1) \neq k$
- either $p_{1}{ }^{*}(0)+/ x p_{1}{ }^{*}(1) \neq k$ (and V rejects) "sis φ
- or $p_{1}{ }^{*} \neq p_{1} \Rightarrow \operatorname{Pr}_{z_{1}}\left[p_{1}{ }^{*}\left(z_{1}\right)=p_{1}\left(z_{1}\right)\right] \leq 2|\varphi| / 2^{n}$
- assume ($\left.p_{i+1}(0)+/ x p_{i+1}(1)=\right) p_{i}\left(z_{i}\right) \neq p_{i}^{*}\left(z_{i}\right)$
- either $p_{i+1}{ }^{*}(0)+/ x p_{i+1}{ }^{*}(1) \neq p_{i}^{*}\left(z_{i}\right)$ (and V rejects)
- or $p_{i+1}{ }^{*} \neq p_{i+1} \Rightarrow \operatorname{Pr}_{z_{i+1}}\left[p_{i+1}{ }^{*}\left(z_{i+1}\right)=p_{i+1}\left(z_{i+1}\right)\right] \leq 2|\varphi| / 2^{n}$

May 18,2023
CS151 Lecture 14
25

Analysis of protocol

- Soundness (continued):
- if verifier does not reject, there must be some i for which:

$$
\mathrm{p}_{\mathrm{i}}^{*} \neq \mathrm{p}_{\mathrm{i}} \text { and yet } \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)
$$

- for each i, probability is $\leq 2|\varphi| / 2^{n}$
- union bound: probability that there exists an i for which the bad event occurs is

$$
\leq 2 n|\varphi| / 2^{n} \leq \operatorname{poly}(n) / 2^{n} \ll 1 / 3
$$

- Conclude: QSAT is in IP
may 18,2023
cS151 Lecture 14
26

Example

- Papadimitriou - pp. 475-480
$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists w(z \vee(y \wedge \neg w))$
$p_{\varphi}=\prod_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y})^{*} \prod_{\mathrm{z}=0,1}[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\right.$ $\left.\left.\Sigma_{w=0,1}(z+y(1-w))\right]\right]$
($\mathrm{p}_{\varphi}=96$ but V doesn't know that yet !)
May 18, 2023 CS151 Lecture 14

27

Example

$p_{\varphi}=\prod_{k=0,1} \sum_{y=0,1}\left[(x+y) * \prod_{z=0,1}\left[(x z+y(1-z))+\sum_{w=0,1}(z+y(1-w))\right]\right]$
Round 1: (prover claims $p_{\varphi}>0$)

- prover sends $q=13$; claims $p_{\varphi}=96 \bmod 13=$ 5 ; sends k=5
- prover removes outermost " $П$ "; sends

$$
p_{1}(x)=2 x^{2}+8 x+6
$$

- verifier checks:

$$
p_{1}(0) p_{1}(1)=(6)(16)=96 \equiv 5(\bmod 13)
$$

- verifier picks randomly: $z_{1}=9$

May 18,2023
CS151 Lecture 14
28

Example

$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists w(z \vee(y \wedge \neg w))$
$p_{\varphi}=\prod_{x=0,1} \sum_{y=0,1}\left[(x+y)^{*} \prod_{z=0,1}[(x z+y(1-z))+\right.$ $\left.\left.\Sigma_{w=0,1}(z+y(1-w))\right]\right]$
$p_{\varphi}[x \leftarrow 9]=\sum_{y=0,1}\left[(9+y)^{*} \prod_{z=0,1}[(9 z+y(1-z))+\right.$ $\left.\left.\Sigma_{w=0,1}(z+y(1-w))\right]\right]$

May 18,2023
CS151 Lecture 14
29

Example

$p_{1}(9)=\sum_{y=0,0}\left[(9+y)^{*} \prod_{z=0,1[(9 z+y(1-z))}+\sum_{w=0,1(z+y(1-w))]]}\right.$
Round 2: (prover claims this $=6$)

- prover removes outermost " Σ "; sends

$$
p_{2}(y)=2 y^{3}+y^{2}+3 y
$$

- verifier checks:

$$
\mathrm{p}_{2}(0)+\mathrm{p}_{2}(1)=0+6=6 \equiv 6(\bmod 13)
$$

- verifier picks randomly: $z_{2}=3$

May 18,2023
CS151 Lecture 14
30

31

Example

$p_{2}(3)=\left[(9+3) * \prod_{\left.z=0,1\left[(9 z+3(1-z))+\sum_{w=0,1}(z+3(1-w))\right]\right]}\right.$
Round 3: (prover claims this $=7$)

- everyone agrees expression $=12^{*}(\ldots)$
- prover removes outermost " \square "; sends

$$
p_{3}(z)=8 z+6
$$

- verifier checks:
$\mathrm{p}_{3}(0) * \mathrm{p}_{3}(1)=(6)(14)=84 ; 12 * 84 \equiv 7(\bmod 13)$
- verifier picks randomly: $z_{3}=7$

May 18,2023
CS151 Lecture 14
32

Example

$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists w(z \vee(y \wedge \neg w))$
$p_{\varphi}=\Pi_{x=0,1} \Sigma_{y=0,1}\left[(x+y)^{*} \prod_{z=0,1}[(x z+y(1-z))+\right.$
$\left.\left.\sum_{w=0,1}(z+y(1-w))\right]\right]$
$\mathrm{p}_{\varphi}[\mathrm{x} \leftarrow 9, \mathrm{y} \leftarrow 3, \mathrm{z} \leftarrow 7]=$
12 * $\left[(9 * 7+3(1-7))+\sum_{w=0,1}(7+3(1-w))\right]$

May 18,2023
CS151 Lecture 14

33

Example

$12^{*} p_{3}(7)=12$ *[(9*7+3(1-7))+ $\left.\sum_{w=0,1}(7+3(1-w))\right]$
Round 4: (prover claims $=12^{*} 10$)

- everyone agrees expression $=12^{*}[6+(\ldots)]$
- prover removes outermost " Σ "; sends
- verifier checks:
$\mathrm{p}_{4}(0)+\mathrm{p}_{4}(1)=10+20=30 ; 12^{*}[6+30] \equiv 12^{*} 10(\bmod 13)$
- verifier picks randomly: $z_{4}=2$
- Final check:
$12^{*}\left[\left(9^{*} 7+3(1-7)\right)+(7+3(1-2))\right]=12^{*}\left[6+p_{4}(2)\right]=12^{*}[6+30]$
May 18,2023
CS151 Lecture 14
34

Arthur-Merlin Games

- IP permits verifier to keep coin-flips private - necessary feature?
- GNI protocol breaks without it
- Arthur-Merlin game: interactive protocol in which coin-flips are public
- Arthur (verifier) may as well just send results of coin-flips and ask Merlin (prover) to perform any computation Arthur would have done

[^1]CS151 Lecture 14
35

Arthur-Merlin Games

- Clearly Arthur-Merlin $\subseteq I P$
- "private coins are at least as powerful as public coins"
- Proof that IP = PSPACE actually shows PSPACE \subseteq Arthur-Merlin \subseteq IP = PSPACE
_ "public coins are at least as powerful as private coins" !

May 18,2023
CS151 Lecture 14
36

Arthur-Merlin Games

- Delimiting \# of rounds:
- AM[k] = Arthur-Merlin game with k rounds, Arthur (verifier) goes first
- MA[k] = Arthur-Merlin game with k rounds, Merlin (prover) goes first
Theorem: $\mathbf{A M}[\mathbf{k}]$ ($\mathbf{M A}[\mathbf{k}]$) equals $\mathbf{A M [k]}$ (MA[k]) with perfect completeness.
- i.e., $x \in L$ implies accept with probability 1 - proof on problem set

May 18,2023
CS151 Lecture 14
37

Arthur-Merlin Games

Theorem: for all constant $\mathrm{k} \geq 2$
AM[k] = AM[2].

- Proof:
- we show MA[2] \subseteq AM[2]
- implies can move all of Arthur's messages to beginning of interaction:

AMAMAM...AM = AAMMAM...AM

$$
\ldots=\text { AAA...AMMM...M }
$$

May 18.2023
CS151 Lecture 14
38

Arthur-Merlin Games

- Proof (continued):
- given $L \in$ MA[2]
$x \in L \Rightarrow \exists m \operatorname{Pr}_{[}[(x, m, r) \in R]=1$
$\xrightarrow{\text { order reversed }} \Rightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R]=1$
order reversed
$x \notin L \Rightarrow \forall m \operatorname{Pr}_{r}[(x, m, r) \in R] \leq \varepsilon$
$\Rightarrow \operatorname{Pr}[\forall m(x, m, r) \in R] \leq 2^{|m| \varepsilon}$
- by repeating t times with independent random strings r, can make error $\varepsilon<2^{\text {t }}$
- set $\mathrm{t}=\mathrm{m}+1$ to get $2|m| \varepsilon<1 / 2$.

May 18, 2023 CS151 Lecture 14
39

[^0]: ## Graph Isomorphism

 - $\mathrm{GI}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \simeq \mathrm{G}_{1}\right\}$
 - in NP
 - not known to be in \mathbf{P}, or NP-complete
 - GNI = complement of GI
 - not known to be in NP

 ## Theorem (GMW): GNI $\in \mathbb{I P}$

 -indication IP may be more powerful than NP
 May 18,2023
 CS151 Lecture 14

[^1]: May 18,2023

