
1

Lecture 13
May 16, 2023

1

May 16, 2023

Karp-Lipton

• we know that P = NP implies SAT has
polynomial-size circuits.
– (showing SAT does not have poly-size circuits

is one route to proving P ≠ NP)
• suppose SAT has poly-size circuits

– any consequences?
– might hope: SAT ∈P/poly ⇒ PH collapses to

P, same as if SAT ∈ P

CS151 Lecture 13

2

May 16, 2023

Karp-Lipton

Theorem (KL): if SAT has poly-size circuits
then PH collapses to the second level.

• Proof:
– suffices to show Π2 ⊆ Σ2

– L ∈ Π2 implies L expressible as:
L = { x : ∀y ∃z (x, y, z) ∈ R}

with R ∈ P.

CS151 Lecture 13

3

May 16, 2023

Karp-Lipton

L = { x : ∀y ∃z (x, y, z) ∈ R}
– given (x, y), “∃z (x, y, z) ∈ R?” is in NP
– pretend C solves SAT, use self-reducibility
– Claim: if SAT ∈ P/poly, then L =

{ x : ∃C ∀y
[use C repeatedly to find some z for
which (x, y, z) ∈ R; accept iff
(x, y, z) ∈ R] }

poly time

CS151 Lecture 13

4

May 16, 2023

Karp-Lipton

L = { x : ∀y ∃z (x, y, z) ∈ R}

{x : ∃C ∀y [use C repeatedly to find some z for
which (x,y,z) ∈ R; accept iff (x,y,z) ∈ R] }

– x ∈ L:
• some C decides SAT ⇒∃C ∀y […] accepts

– x ∉ L:
• ∃y ∀z (x, y, z) ∉ R ⇒∀C ∃y […] rejects

CS151 Lecture 13

5

May 16, 2023

BPP ⊆ PH
• Recall: donʼt know BPP different from EXP

Theorem (S,L,GZ): BPP⊆ (Π2∩Σ2)

• donʼt know Π2∩Σ2 different from EXP but
believe much weaker

CS151 Lecture 13

6

2

May 16, 2023

BPP ⊆ PH
• Proof:

– BPP language L: p.p.t. TM M:
x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3

x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3
– strong error reduction: p.p.t. TM M’

• use n random bits (|y’| = n)
• # strings y’ for which M’(x, y’) incorrect is at

most 2n/3
• (can’t achieve with naïve amplification)

CS151 Lecture 13

7

May 16, 2023

BPP ⊆ PH
• view yʼ = (w, z), each of length n/2
• consider output of Mʼ(x, (w, z)):

11
1 1

1
11 1

1
1 1 1

111 1
11
0 1

1
10 1

0
0 1 1

011 1
11
1 1

1
11 1

0
0 0 1

10 0
0 10

1 1
0
11 1

1
1 1 1

01 1
0

00
0 0

0
10 0

1
0 0 0

00 0
000

1 0
0
00 0

0
0 0 0

01 0
0 00

0 0
0
00 0

0
0 0 0

00 0
0 00

0 0
0
10 0

1
0 0 0

00 0
0

w = 000…00 000…01 000…10 … 111…11

…

…

x∈L

x∉L

so many
ones,

some disk
is all ones

so few
ones, not

enough for
whole disk

CS151 Lecture 13

8

May 16, 2023

BPP ⊆ PH

• proof (continued):
– strong error reduction: # bad y’ < 2n/3
– y’ = (w, z) with |w| = |z| = n/2
– Claim: L = {x : ∃w ∀z M’(x, (w, z)) = 1 }
– x∈L: suppose ∀w∃z M’(x, (w, z)) = 0

• implies ≥ 2n/2 0’s; contradiction
– x∉L: suppose ∃w∀z M’(x, (w, z)) = 1

• implies ≥ 2n/2 1’s; contradiction

CS151 Lecture 13

9

May 16, 2023

BPP ⊆ PH
– given BPP language L: p.p.t. TM M:

x ∈ L ⇒ Pry[M(x,y) accepts] ≥ 2/3
x ∉ L ⇒ Pry[M(x,y) rejects] ≥ 2/3

– showed L = {x : ∃w ∀z M’(x, (w, z)) = 1}

– thus BPP ⊆ Σ2

– BPP closed under complement ⇒ BPP ⊆ Π2

– conclude: BPP⊆ (Π2∩Σ2)

CS151 Lecture 13

10

May 16, 2023

New Topic

The complexity of
counting

CS151 Lecture 13

11

May 16, 2023

Counting problems

• So far, we have ignored function problems
– given x, compute f(x)

• important class of function problems:
counting problems

– e.g. given 3-CNF φ how many satisfying
assignments are there?

CS151 Lecture 13

12

3

May 16, 2023

Counting problems

• #P is the class of function problems
expressible as:

input x f(x) = |{y : (x, y) ∈ R}|
where R ∈ P.

• compare to NP (decision problem)
input x f(x) = ∃y : (x, y) ∈ R ?

where R ∈ P.

CS151 Lecture 13

13

May 16, 2023

Counting problems

• examples
– #SAT: given 3-CNF φ how many satisfying

assignments are there?

– #CLIQUE: given (G, k) how many cliques of
size at least k are there?

CS151 Lecture 13

14

May 16, 2023

Reductions

• Reduction from function problem f1 to
function problem f2
– two efficiently computable functions Q, A

x
(prob. 1)

y
(prob. 2)

f2(y)f1(x)

Q

A

f2f1

CS151 Lecture 13

15

May 16, 2023

Reductions
• problem f is #P-complete if

– f is in #P
– every problem in #P

reduces to f

• “parsimonious reduction”: A is identity
– many standard NP-completeness reductions

are parsimonious
– therefore: if #SAT is #P-complete we get lots

of #P-complete problems

x
(prob. 1)

y
(prob. 2)

f2(y)f1(x)

Q

A
f2f1

CS151 Lecture 13

16

May 16, 2023

#SAT

#SAT: given 3-CNF φ how many satisfying
assignments are there?

Theorem: #SAT is #P-complete.

• Proof:
– clearly in #P: (φ, A) ∈ R ⇔A satisfies φ
– take any f ∈ #P defined by R ∈ P

CS151 Lecture 13

17

May 16, 2023

#SAT

– add new variables z, produce φ such that
∃z φ(x, y, z) = 1 ⇔ C(x, y) = 1

– for (x, y) such that C(x, y) = 1 this z is unique
– hardwire x
– # satisfying assignments = |{y : (x, y) ∈ R}|

…x… …y…
C

CVAL reduction
for R1 iff (x, y) ∈ R

f(x) =
|{y : (x, y) ∈ R}|

CS151 Lecture 13

18

4

May 16, 2023

Relationship to other classes

• To compare to classes of decision
problems, usually consider

P#P

which is a decision class…
• easy: NP, coNP ⊆ P#P

• easy: P#P ⊆ PSPACE

Todaʼs Theorem (homework): PH ⊆ P#P.

CS151 Lecture 13

19

May 16, 2023

Relationship to other classes

Question: is #P hard because it entails
finding NP witnesses?

…or is counting difficult by itself?

CS151 Lecture 13

20

May 16, 2023

Bipartite Matchings

• Definition:
– G = (U, V, E) bipartite graph with |U| = |V|
– a perfect matching in G is a subset M ⊆ E

that touches every node, and no two edges in
M share an endpoint

CS151 Lecture 13

21

May 16, 2023

Bipartite Matchings

• Definition:
– G = (U, V, E) bipartite graph with |U| = |V|
– a perfect matching in G is a subset M ⊆ E

that touches every node, and no two edges in
M share an endpoint

CS151 Lecture 13

22

May 16, 2023

Bipartite Matchings

• #MATCHING: given a bipartite graph
G = (U, V, E) how many perfect
matchings does it have?

Theorem: #MATCHING is #P-complete.
• But… can find a perfect matching in

polynomial time!
– counting itself must be difficult

CS151 Lecture 13

23

May 16, 2023

Cycle Covers

• Claim: 1-1 correspondence between cycle
covers in Gʼ and perfect matchings in G
– #MATCHING and #CYCLE-COVER

parsimoniously reducible to each other

1 2 3 4 5

1 2 3 4 5
1

2
3

4

5
G = (U, V, E) Gʼ = (V, Eʼ)

CS151 Lecture 13

24

5

May 16, 2023

Cycle Covers

• cycle cover: collection of node-disjoint
directed cycles that touch every node

• #CYCLE-COVER: given directed graph G
= (V, E) how many cycle covers does it
have?

Theorem: #CYCLE-COVER is #P-complete.
– implies #MATCHING is #P-complete

CS151 Lecture 13

25

May 16, 2023

Cycle Cover is #P-complete

• variable gadget: every cycle cover
includes left cycle or right cycle

xi ¬xi

•clause gadget: cycle
cover cannot use all three
outer edges

– and each of 7 ways to
exclude at least one gives
exactly 1 cover using
those external edges

CS151 Lecture 13

26

Cycle Cover is #P-complete

May 16, 2023 CS151 Lecture 13

27

Cycle Cover is #P-complete

May 16, 2023 CS151 Lecture 13

28

May 16, 2023

Cycle Cover is #P-complete

• clause gadget corresponding to (A∨B∨C)
has “xor” gadget between outer 3 edges
and A, B, C

B ¬B
A

¬A

C ¬C
xor gadget ensures that
exactly one of two
edges can be in cover

u v

uʼvʼ
xor

CS151 Lecture 13

29

May 16, 2023

Cycle Cover is #P-complete

• Proof outline (reduce from #SAT)
(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧ … ∧(x3∨¬ x2)

x1 ¬x1 x2 ¬x2 x3 ¬x3

. . . clause
gadgets

variable gadgets

xor gadgets
(exactly 1 of
two edges is in
cover)

N.B. must avoid reducing
SAT to MATCHING!

CS151 Lecture 13

30

6

May 16, 2023

Cycle Cover is #P-complete

• Introduce edge weights
– cycle cover weight is product of weights of its

edges
• “implement” xor gadget by

– weight of cycle cover that “obeys” xor
multiplied by 4 (mod N)

– weight of cycle cover that “violates” xor
multiplied by N

large integer

CS151 Lecture 13

31

May 16, 2023

Cycle Cover is #P-complete

• Weighted xor gadget:

– weight of cycle cover that “obeys” xor
multiplied by 4 (mod N)

– weight of cycle cover that “violates” xor
multiplied by N

u v

uʼvʼ
xor

u

vʼ

v

uʼ

N-1

N-1
N-1

2
3(unlabeled weights are 1)

CS151 Lecture 13

32

May 16, 2023

Cycle Cover is #P-complete

• Simulating positive edge weights
– need to handle 2, 3, 4, 5, …, N-1

3

2

2k

k times

CS151 Lecture 13

33

May 16, 2023

Cycle Cover is #P-complete

(¬x1∨x2∨¬x3)∧(¬x3∨x1)∧ … ∧(x3∨¬ x2)

– m = # xor gadgets; n = # variables; N > 4m2n
– # covers (mod N) = (4m)⋅(#sat. assignments)

x1 ¬x1 x2 ¬x2 x3 ¬x3

. . . clause
gadget

variable gadgets:

xor gadget
(exactly 1 of
two edges is in
cover)

CS151 Lecture 13

34

May 16, 2023

New Topic

• proof systems

• interactive proofs and their power

• Arthur-Merlin games

CS151 Lecture 13

35

May 16, 2023

Proof systems

L = { (A, 1k) : A is a true mathematical assertion
with a proof of length k}

What is a “proof”?

complexity insight: meaningless unless can be
efficiently verified

CS151 Lecture 13

36

7

May 16, 2023

Proof systems

• given language L, goal is to prove x ∈ L

• proof system for L is a verification algorithm V
– completeness: x ∈ L ⇒∃ proof, V accepts (x, proof)

“true assertions have proofs”
– soundness: x ∉ L ⇒∀ proof*, V rejects (x, proof*)

“false assertions have no proofs”
– efficiency: ∀ x, proof: V(x, proof) runs in polynomial

time in |x|

CS151 Lecture 13

37

May 16, 2023

Classical Proofs

• previous definition:
“classical” proof system

• recall:
L ∈ NP iff expressible as

L = { x | ∃y, |y| < |x|k, (x, y) ∈ R } and R ∈ P.
• NP is the set of languages with classical

proof systems (R is the verifier)

CS151 Lecture 13

38

May 16, 2023

Interactive Proofs

• Two new ingredients:
– randomness: verifier tosses coins, errs with

some small probability
– interaction: rather than “reading” proof,

verifier interacts with computationally
unbounded prover

• NP proof systems lie in this framework: prover
sends proof, verifier does not use randomness

CS151 Lecture 13

39

May 16, 2023

Interactive Proofs

• interactive proof system for L is an
interactive protocol (P, V)

Prover Verifier

.

.

.

common input: x

accept/
reject

rounds =
poly(|x|)

CS151 Lecture 13

40

May 16, 2023

Interactive Proofs

• interactive proof system for L is an
interactive protocol (P, V)
– completeness: x ∈ L ⇒

Pr[V accepts in (P, V)(x)] ≥ 2/3
– soundness: x ∉ L ⇒ ∀ P*

Pr[V accepts in (P*, V)(x)] ≤ 1/3
– efficiency: V is p.p.t. machine

• repetition: can reduce error to any ε

CS151 Lecture 13

41

May 16, 2023

Interactive Proofs

IP = {L : L has an interactive proof
system}

• Observations/questions:
– philosophically interesting: captures more

broadly what it means to be convinced a
statement is true

– clearly NP ⊆ IP. Potentially larger. How much
larger?

– if larger, randomness is essential (why?)

CS151 Lecture 13

42

