

1

Karp-Lipton

- we know that $\mathbf{P}=\mathbf{N P}$ implies SAT has polynomial-size circuits.
- (showing SAT does not have poly-size circuits is one route to proving $\mathbf{P} \neq \mathbf{N P}$)
- suppose SAT has poly-size circuits
- any consequences?
- might hope: SAT \in P/poly \Rightarrow PH collapses to
\mathbf{P}, same as if $S A T \in \mathbf{P}$

May 16, 2023
CS151 Lecture 13
2

Karp-Lipton

Theorem (KL): if SAT has poly-size circuits then PH collapses to the second level.

- Proof:
- suffices to show $\boldsymbol{\Pi}_{\mathbf{2}} \subseteq \boldsymbol{\Sigma}_{\mathbf{2}}$
$-L \in \Pi_{2}$ implies L expressible as:

$$
L=\{x: \forall y \exists z(x, y, z) \in R\}
$$

with $R \in P$.
May 16,2023
CS151 Lecture 13
3

4

Karp-Lipton
 $L=\{x: \forall y \exists z(x, y, z) \in R\}$

$\{x: \exists C \forall y$ [use C repeatedly to find some z for which $(x, y, z) \in R$; accept iff $(x, y, z) \in R]\}$
$-x \in L$:

- some C decides SAT $\Rightarrow \exists C \forall y[\ldots]$ accepts
$-x \notin \mathrm{~L}$:
- $\exists y \forall z(x, y, z) \notin R \Rightarrow \forall C \exists y[\ldots]$ rejects

May 16, 2023
CS5151 Lecture 13
5

- Recall: don't know BPP different from EXP

Theorem $(\mathrm{S}, \mathrm{L}, \mathrm{GZ}): \mathrm{BPP} \subseteq\left(\Pi_{2} \cap \Sigma_{2}\right)$

- don't know $\boldsymbol{\Pi}_{2} \cap \boldsymbol{\Sigma}_{2}$ different from EXP but believe much weaker

May 16,2023
CS151 Lecture 13

7

8

$B P P \subseteq P H$

- proof (continued):
- strong error reduction: \# bad $y^{\prime}<2^{n / 3}$
$-y^{\prime}=(w, z)$ with $|w|=|z|=n / 2$
- Claim: $L=\left\{x: \exists w \forall z M^{\prime}(x,(w, z))=1\right\}$
- $x \in L$: suppose $\forall w \exists z M^{\prime}(x,(w, z))=0$
- implies $\geq 2^{n / 2} 0^{\prime} s$; contradiction
$-x \notin L$: suppose $\exists w \forall z M^{\prime}(x,(w, z))=1$
- implies $\geq 2^{n / 2} 1^{\prime} \mathrm{s}$; contradiction

May 16,2023
CS151 Lecture 13
9

$\mathrm{BPP} \subseteq \mathrm{PH}$

- given BPP language L : p.p.t. TM M:
$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 2 / 3$ $x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$
- showed $L=\left\{x: \exists w \forall z M^{\prime}(x,(w, z))=1\right\}$
- thus BPP $\subseteq \Sigma_{2}$
- BPP closed under complement $\Rightarrow B P P \subseteq \Pi_{2}$
- conclude: $\operatorname{BPP} \subseteq\left(\Pi_{2} \cap \Sigma_{2}\right)$

May 16, 2023
CS151 Lecture 13
10

11

Counting problems

- So far, we have ignored function problems - given x , compute $\mathrm{f}(\mathrm{x})$
- important class of function problems:

counting problems

- e.g. given 3-CNF φ how many satisfying assignments are there?

May 16,2023
CS151 Lecture 13
12

Counting problems - \#P is the class of function problems expressible as: $\text { input } x \quad f(x)=\|\{y:(x, y) \in R\}\|$ where $R \in \mathbf{P}$. - compare to NP (decision problem) $\text { input } x \quad f(x)=\exists y:(x, y) \in R ?$ where $\mathrm{R} \in \mathbf{P}$.	

13

Counting problems

- examples
- \#SAT: given 3-CNF φ how many satisfying assignments are there?
- \#CLIQUE: given (G, k) how many cliques of size at least k are there?

May 16,2023
CS151 Lecture 13
14
Counting problems

- examples
- \#SAT: given 3-CNF φ how many satisfying
assignments are there?
- \#CLIQUE: given (G, k) how many cliques of
size at least k are there?
May 16,2023

Reductions

- Reduction from function problem f_{1} to function problem f_{2}
- two efficiently computable functions Q, A

May 16,2023
CS151 Lecture 13
15

Reductions
- Reduction from function problem f_{1} to function problem f_{2} - two efficiently computable functions Q, A
$\underset{(\text { prob. 1) }}{x} \xrightarrow{Q} \stackrel{y}{y} \begin{gathered} \text { (prob. 2) } \end{gathered}$
$\underset{f_{1}(x)}{f_{1}} \stackrel{A}{f_{2}} \stackrel{f_{2}}{f_{2}(y)}$
May 16, 2023 CS151 Lecture 13

16

18

Relationship to other classes

- To compare to classes of decision problems, usually consider

P\#P
which is a decision class...

- easy: NP, coNP $\subseteq P^{\# P}$
- easy: $\mathrm{P}^{\# P} \subseteq$ PSPACE

Toda's Theorem (homework): $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$.
CS151 Lecture 13
19

Relationship to other classes

Question: is \#P hard because it entails finding NP witnesses?
...or is counting difficult by itself?

May 16,2023
CS151 Lecture 13
20

Bipartite Matchings

- \#MATCHING: given a bipartite graph $\mathrm{G}=(\mathrm{U}, \mathrm{V}, \mathrm{E})$ how many perfect matchings does it have?

Theorem: \#MATCHING is \#P-complete.

- But... can find a perfect matching in polynomial time!
- counting itself must be difficult

[^0]CS151 Lecture 13
23

Bipartite Matchings

- Definition:
$-\mathrm{G}=(\mathrm{U}, \mathrm{V}, \mathrm{E})$ bipartite graph with $|\mathrm{U}|=|\mathrm{V}|$
- a perfect matching in G is a subset $M \subseteq E$ that touches every node, and no two edges in M share an endpoint

21

Bipartite Matchings

- Definition:
$-\mathrm{G}=(\mathrm{U}, \mathrm{V}, \mathrm{E})$ bipartite graph with $|\mathrm{U}|=|\mathrm{V}|$
- a perfect matching in G is a subset $M \subseteq E$ that touches every node, and no two edges in M share an endpoint

May 16,2023 CS151 Lecture 13

Cycle Covers

- Claim: 1-1 correspondence between cycle covers in G^{\prime} and perfect matchings in G
- \#MATCHING and \#CYCLE-COVER parsimoniously reducible to each other

May 16,2023
CS151 Lecture 13
24

Cycle Covers

- cycle cover: collection of node-disjoint directed cycles that touch every node
- \#CYCLE-COVER: given directed graph G $=(\mathrm{V}, \mathrm{E})$ how many cycle covers does it have?

Theorem: \#CYCLE-COVER is \#P-complete. - implies \#MATCHING is \#P-complete

May 16, 2023
CS151 Lecture 13
25

Cycle Cover is \#P-complete

- variable gadget: every cycle cover includes left cycle or right cycle
-clause gadget: cycle cover cannot use all three outer edges
- and each of 7 ways to
exclude at least one gives exactly 1 cover using
those external edges
may 16,2023
CS151 Lecture 13
26

Cycle Cover is \#P-complete

May 16,2023
CS151 Lecture 13
27

Cycle Cover is \#P-complete

28

Cycle Cover is \#P-complete

- clause gadget corresponding to (AvBvC) has "xor" gadget between outer 3 edges and A, B, C

xor gadget ensures that exactly one of two exactly one of two
edges can be in cover
 edges can be in cover

May 16, 2023
CS151 Lecture 13
29

Cycle Cover is \#P-complete

- Proof outline (reduce from \#SAT)

N.B. must avoid reducing

SAT to MATCHING!
May 16,2023

30

Cycle Cover is \#P-complete

- Introduce edge weights
- cycle cover weight is product of weights of its edges
- "implement" xor gadget by
- weight of cycle cover that "obeys" xor multiplied by $4(\bmod \mathrm{~N})$
- weight of cycle cover that "violates" xor multiplied by N
large integer
May 16,2023
CS151 Lecture 13
31

Cycle Cover is \#P-complete

- weight of cycle cover that "obeys" xor multiplied by $4(\bmod \mathrm{~N})$
- weight of cycle cover that "violates" xor multiplied by N

May 16,2023
CS151 Lecture 13
32

33

Cycle Cover is \#P-complete

- Simulating positive edge weights
- need to handle $2,3,4,5, \ldots, N-1$

May 16,2023
CS151 Lecture 13

New Topic

- proof systems
- interactive proofs and their power
- Arthur-Merlin games

May 16,2023
CS151 Lecture 13
35

Proof systems

$L=\left\{\left(A, 1^{k}\right): A\right.$ is a true mathematical assertion with a proof of length k \}

What is a "proof"?
complexity insight: meaningless unless can be efficiently verified

May 16,2023
CS151 Lecture 13
36

Proof systems

- given language L, goal is to prove $x \in L$
- proof system for L is a verification algorithm V - completeness: $x \in L \Rightarrow \exists$ proof, V accepts (x, proof) "true assertions have proofs"
- soundness: $x \notin L \Rightarrow \forall$ proof*, V rejects (x, proof*) "false assertions have no proofs"
- efficiency: $\forall \mathrm{x}$, proof: $\mathrm{V}(\mathrm{x}$, proof) runs in polynomial time in $|x|$

May 16,2023
CS151 Lecture 13

37

Classical Proofs

- previous definition:
"classical" proof system
- recall:
$L \in N P$ iff expressible as
$L=\left\{x\left|\exists y,|y|<|x|^{k},(x, y) \in R\right\}\right.$ and $R \in \mathbf{P}$.
- NP is the set of languages with classical proof systems (R is the verifier)

May 16,2023
CS151 Lecture 13
38

Interactive Proofs

interactive proof system for L is an interactive protocol (P, V)

- completeness: $x \in L \Rightarrow$
$\operatorname{Pr}[\mathrm{V}$ accepts in $(\mathrm{P}, \mathrm{V})(\mathrm{x})] \geq 2 / 3$
- soundness: $x \notin L \Rightarrow \forall P^{*}$
$\operatorname{Pr}\left[\mathrm{V}\right.$ accepts in $\left.\left(\mathrm{P}^{*}, \mathrm{~V}\right)(\mathrm{x})\right] \leq 1 / 3$
- efficiency: V is p.p.t. machine
- repetition: can reduce error to any ε

May 16,2023
CS151 Lecture 13
41

Interactive Proofs

- Two new ingredients:
- randomness: verifier tosses coins, errs with some small probability
- interaction: rather than "reading" proof, verifier interacts with computationally unbounded prover
- NP proof systems lie in this framework: prover sends proof, verifier does not use randomness

May 16, 2023
CS151 Lecture 13
39

Interactive Proofs

- interactive proof system for L is an interactive protocol (P, V)

$$
\text { Prover } \xlongequal[\substack{\text { \# rounds }=\\ \text { ammon input: } x}]{\rightleftarrows} \text { Verifier }
$$

May 16,2023
40

Interactive Proofs

IP $=\{L: L$ has an interactive proof system\}

- Observations/questions:
- philosophically interesting: captures more broadly what it means to be convinced a statement is true
- clearly NP \subseteq IP. Potentially larger. How much larger?
- if larger, randomness is essential (why?)

[^1]CS151 Lecture 13
42

[^0]: May 16, 2023

[^1]: May 16, 2023

