

1

RL

- Recall: probabilistic Turing Machine - deterministic TM with extra tape for "coin flips"
- RL (Bandom Logspace)
$-L \in R L$ if there is a probabilistic logspace TM M:

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
$$

- important detail \#1: only allow one-way access to coin-flip tape
- important detail \#2: explicitly require to run in polynomial time May 11, 2023

2

May 11,2023
CS151 Lecture 12
6

- Natural problem: from $s \rightarrow t$?

Theorem: USTCONN \in RL.

May 11, 2023

RL

- $\mathrm{L} \subseteq \mathbf{R L} \subseteq \mathrm{NL} \subseteq$ SPACE $\left(\log ^{2} \mathrm{n}\right)$
- Theorem (SZ) : RL \subseteq SPACE $\left(\log ^{3 / 2} \mathrm{n}\right)$
- Belief: $L=R L$ (major open problem)

May 11,2023
CS151 Lecture 12
3

ay 11,2023

Undirected STCONN

- Proof sketch: (in Papadimitriou)
- add self-loop to each vertex (technical reasons)
- start at s , random walk $2|\mathrm{~V}||E|$ steps, accept if see t
- Lemma: expected return time for any node i is $2 \mid \mathrm{E} / / \mathrm{d}$
- suppose $s=v_{1}, v_{2}, \ldots, v_{n}=t$ is a path
- expected time from v_{i} to v_{i+1} is $\left(d_{i} / 2\right)\left(2|E| / d_{i}\right)=|E|$
- expected time to reach $v_{n} \leq|\mathrm{V}||\mathrm{E}|$
- Pr[fail reach t in $2|\mathrm{~V}||\mathrm{E}|$ steps $] \leq 1 / 2$
- Reingold 2005: USTCONN \in L

May 11, 2023
CS151 Lecture 12
${ }^{5}$
5
Undirected STCONN: given an undirected graph $G=(V, E)$, nodes s, t, is there a path (Recall: STCONN is NL-complete) CS151 Lecture 12 4

RL

$\mathrm{L} \subseteq \mathrm{RL} \subseteq \mathrm{NL}$
\square

A motivating question

- Central problem in logic synthesis: \cdot - given Boolean circuit C , integer k - is there a circuit C^{\prime} of size at most k that computes the same function C does?

- Complexity of this problem?

- NP-hard? in NP? in coNP? in PSPACE? - complete for any of these classes?

May 11,2023
CS151 Lecture 12
7

Oracle Turing Machines

- Oracle Turing Machine (OTM): - multitape TM M with special "query" tape - special states $q_{\text {? }}, q_{y e s}, q_{\text {no }}$
- on input x, with oracle language A
- M ${ }^{\text {A }}$ runs as usual, except..
- when M^{A} enters state $q_{?}$: - $y=$ contents of query tape - $y \in A \Rightarrow$ transition to $q_{y e s}$ - $y \notin A \Rightarrow$ transition to $q_{n o}$

May 11, 2023 CS151 Lecture 12

8

Oracle Turing Machines

- Nondeterministic OTM
- defined in the same way
- (transition relation, rather than function)
- oracle is like a subroutine, or function in your favorite programming language
- but each call counts as single step
e.g.: given $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ are even \# satisfiable?
- poly-time OTM solves with SAT oracle
may 11,2023
CS151 Lecture 12
9

Oracle Turing Machines

Shorthand \#1:

- applying oracles to entire complexity classes:
- complexity class C
- language A
$\mathrm{C}^{A}=\{$ L decided by OTM M with oracle A with M "in" C$\}$
- example: PSAT

May 11, 2023
CS151 Lecture 12
10
10

Oracle Turing Machines

Shorthand \#2:

- using complexity classes as oracles: - OTM M
- complexity class C
$-\mathrm{M}^{\mathrm{C}}$ decides language L if for some language

$$
\mathrm{A} \in \mathrm{C}, \mathrm{M}^{\mathrm{A}} \text { decides } \mathrm{L}
$$

Both together: $C^{D}=$ languages decided by OTM "in" \mathbf{C} with oracle language from D exercise: show $\mathbf{P}^{S A T}=\mathbf{P N P}^{\mathbf{N P}}$

[^0]CS151 Lecture 12 ${ }^{11}$

11

The Polynomial-Time Hierarchy

- can define lots of complexity classes using oracles
- the classes on the next slide stand out
- they have natural complete problems
- they have a natural interpretation in terms of alternating quantifiers
- they help us state certain consequences and containments (more later)

May 11,2023
CS151 Lecture 12
12
12

The Polynomial-Time Hierarchy

$\Sigma_{0}=\Pi_{0}=P$		
$\Delta_{1}=P^{P}$	$\Sigma_{1}=N P$	$\Pi_{1}=\operatorname{coNP}$
$\Delta_{2}=P^{N P}$	$\Sigma_{2}=N P^{N P}$	$\Pi_{2}=\operatorname{coNPNP}$
$\Delta_{i+1}=P^{\Sigma_{i}}$	$\Sigma_{i+i}=N^{\Sigma_{i}}$	$\Pi_{i+1}=\operatorname{coNP}{ }^{\Sigma_{i}}$

Polynomial Hierarchy PH $=U_{i} \Sigma_{i}$
May 11,2023
CS151 Lecture 12
13

The Polynomial-Time Hierarchy

$$
\begin{gathered}
\Sigma_{0}=\Pi_{0}=P \\
\Delta_{i+1}=P^{\Sigma_{i}} \quad \Sigma_{i+i}=N P^{\Sigma_{i}} \quad \Pi_{i+1}=\operatorname{coN} P^{\Sigma_{i}}
\end{gathered}
$$

- Example:
- MIN CIRCUIT: given Boolean circuit C, integer k; is there a circuit C^{\prime} of size at most k that computes the same function C does?
- MIN CIRCUIT $\in \boldsymbol{\Sigma}_{2}$

May 11, 2023
CS151 Lecture 12
${ }^{14}$
14

16

Useful characterization

- Recall: $L \in \mathbf{N P}$ iff expressible as

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where $R \in \mathbf{P}$.

- Corollary: $L \in$ coNP iff expressible as

$$
L=\left\{x\left|\forall y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

where $R \in \mathbf{P}$.

May 11, 2023
CS151 Lecture 12 ${ }^{17}$

17

15
The Polynomial-Time Hierarchy

$$
\begin{gathered}
\Sigma_{0}=\Pi_{0}=P \\
\Delta_{i+1}=P^{\Sigma_{i}} \quad \Sigma_{i+i}=N P^{\Sigma_{i} \quad \Pi_{i+1}=\operatorname{coN} P^{\Sigma_{i}}} .
\end{gathered}
$$

- Example:
- EXACT TSP: given a weighted graph G, and an integer k ; is the k -th bit of the length of the shortest TSP tour in G a 1?
- EXACT TSP $\in \Delta_{2}$

$$
\begin{array}{ll}
\text { May 11, 2023 } & \text { CS151 Lecture } 12
\end{array}
$$

Useful characterization

Theorem: $\mathrm{L} \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as
$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where $\mathrm{R} \in \mathrm{\Pi}_{\mathrm{i}-1}$.

- Corollary: $L \in \boldsymbol{\Pi}_{\mathbf{i}}$ iff expressible as
$L=\left\{x\left|\forall y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where $\mathrm{R} \in \Sigma_{\mathrm{i}-1}$.

May 11, 2023
18
18

Useful characterization

Theorem: $L \in \boldsymbol{\Sigma}_{\mathrm{i}}$ iff expressible as

$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$, where $R \in \Pi_{i-1}$

Useful characterization

Theorem: $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as

$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$, where $R \in \Pi_{i-1}$.

Useful characterization

Theorem: $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as

$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$, where $R \in \Pi_{i-1}$

- $\operatorname{try}: R=\{(x, y): y$ describes valid path of M's computation leading to $\left.\mathrm{q}_{\text {accept }}\right\}$
- valid path = step-by-step description including correct - valid path $=$ step-by-step description including correct
yes/no answer for each A -oracle query $\mathrm{z}_{\mathrm{j}} \quad\left(\mathrm{A} \in \boldsymbol{\Sigma}_{\mathrm{i}-1}\right)$
(\Rightarrow)
- given $L \in \Sigma_{i}=N P^{\Sigma_{i-1}}$ decided by ONTM M
- verify "no" queries in $\Pi_{\mathrm{i}-1}$:
e.g: $z_{1} \notin A \wedge z_{3} \notin A \wedge \ldots \wedge z_{8} \notin A$
- for each "yes" query $z_{i}: \exists w_{j},\left|w_{j}\right| \leq|z|^{k}$ with $\left(z_{i}, w_{j}\right) \in R^{\prime}$ for some $R^{\prime} \in \Pi_{\mathrm{i}-2}$ by induction.
- for each "yes" query z_{j} put w_{j} in description of path y
- we know $\Sigma_{i}=N P^{\Sigma_{i-1}}=N P^{\Gamma_{i-1}}$
- guess y, ask oracle if $(x, y) \in R$

May 11,2023
CS151 Lecture 12
19
19

- try: $R=\{(x, y): y$ describes valid path of M's computation leading to $\left.q_{\text {accept }}\right\}$
- but how to recognize valid computation path May 11, 2023 CS151 Lecture $12 \longrightarrow 20$

May 11,2023
CS151 Lecture 12
21
20

Useful characterization

Theorem: $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as

$L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$, where $R \in \Pi_{i-1}$
all "no" z_{j} are not in A and all "yes" z_{j} have $\left(z_{j}, w_{j}\right) \in R^{\prime}$ and y is a path leading to $q_{\text {accept }}$.

- Note: AND of polynomially-many Π_{i-1} predicates is in Π_{i-1}

Alternating quantifiers

Nicer, more usable version:

- $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as
$L=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$ where $Q=\forall / \exists$ if i even/odd, and $R \in P$
- $\mathrm{L} \in \boldsymbol{\Pi}_{\mathbf{i}}$ iff expressible as
$L=\left\{x \mid \forall y_{1} \exists y_{2} \forall y_{3} \ldots Q y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$ where $Q=\exists / \forall$ if i even/odd, and $R \in \mathbf{P}$
May 11, 2023
CS151 Lecture 12

$$
{ }^{23}
$$

23

Alternating quantifiers

- Proof:
$-(\Rightarrow)$ induction on i
- base case: true for $\boldsymbol{\Sigma}_{1}=\mathbf{N P}$ and $\boldsymbol{\Pi}_{1}=$ coNP
- consider $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$:
$L=\left\{x \mid \exists y_{1}\left(x, y_{1}\right) \in R^{\prime}\right\}$, for $R^{\prime} \in \Pi_{i-1}$
$L=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q y_{i}\left(\left(x, y_{1}\right), y_{2}, \ldots, y_{i}\right) \in R\right\}$
$L=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$
- same argument for $L \in \Pi_{i}$
$-(\Leftarrow)$ exercise.
May 11, 2023
CS151 Lecture 12
24

25

Complete problems

- three variants of SAT:
- QSAT $($ i odd $)=$
\{3-CNFs $\varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ for which

$$
\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots \exists x_{i} \varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}
$$

- QSAT ${ }_{i}(i$ even $)=$
\{3-DNFs $\varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ for which
$\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots \forall x_{i} \varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}$
- QSAT $=\{3-$ CNFs φ for which
$\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1\right\}$
May 11, 2023
CS151 Lecture 12
${ }^{26}$
26

QSAT $_{i}$ is $\boldsymbol{\Sigma}_{\mathbf{i}}$-complete

Theorem: QSAT $_{i}$ is $\boldsymbol{\Sigma}_{\mathrm{i}}$-complete.

- Proof: (clearly in $\boldsymbol{\Sigma}_{\mathrm{i}}$)
- assume i odd; given $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ in form
$\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots \exists y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$

CVAL reduction 1 iff $\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R \quad$ for R
May 11, 2023 CS151 Lecture 12
27

28

QSAT $_{i}$ is $\boldsymbol{\Sigma}_{\mathbf{i}}$-complete

- Proof (continued)
- assume i even; given $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ in form $\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots \forall y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$

QSAT $_{i}$ is $\boldsymbol{\Sigma}_{\mathrm{i}}$-complete

$$
1 \text { iff }\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R
$$

CVAL reduction for R

- Problem set: can construct 3-DNF φ from C:
$\forall z \varphi\left(x, y_{1}, \ldots, y_{i}, z\right)=1 \Leftrightarrow C\left(x, y_{1}, \ldots, y_{i}\right)=1$
- we get:
$\exists y_{1} \forall y_{2} \ldots \forall y_{i} \forall z \varphi\left(x, y_{1}, y_{2}, \ldots, y_{i}, z\right)=1$
$\Leftrightarrow \exists y_{1} \forall y_{2} \ldots \forall y_{i} C\left(x, y_{1}, y_{2}, \ldots, y_{i}\right)=1 \Leftrightarrow x \in L$
May 11, 2023
CS151 Lecture 12
${ }^{29}$
May 11,2023
CS151 Lecture 12
30

QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.

- Proof:
$\left\{x_{1} \exists x_{2} \forall x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}$
in PSPACE: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?
$-" \exists x_{1}$ ": for each x_{1}, recursively solve
- if encounter "yes", return "yes
- " $\forall \mathrm{x}_{1}$ ": for each x_{1}, recursively solve

$$
\exists x_{2} \forall x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) ?
$$

- if encounter "no", return "no"
- base case: evaluating a 3-CNF expression
- poly(n) recursion depth
poly(n) bits of state at each level
May 11,2023
CS151 Lecture 12
31

QSAT is PSPACE-complete

- given TM M deciding L \in PSPACE; input x
$-2^{n^{k}}$ possible configurations
- single START configuration
- assume single ACCEPT configuration
- define:
$\operatorname{REACH}(\mathrm{X}, \mathrm{Y}, \mathrm{i}) \Leftrightarrow$ configuration Y reachable from configuration X in at most 2 i steps

May 11,2023
CS151 Lecture 12
32
33

QSAT is PSPACE-complete

- for $\mathrm{i}=0,1, \ldots \mathrm{n}^{\mathrm{k}}$ produce quantified Boolean expressions $\psi_{i}(A, B, W)$
$\exists w_{1} \forall w_{2} \ldots \psi_{i}(A, B, W) \Leftrightarrow \operatorname{REACH}(A, B, i)$
- convert $\psi_{\mathrm{n}} \mathrm{k}$ to 3-CNF φ
- add variables V
- $\exists w_{1} \forall w_{2} \ldots \exists V \varphi(A, B, W, V) \Leftrightarrow \operatorname{REACH}\left(A, B, n^{k}\right)$
- hardwire $A=$ START, $B=A C C E P T$
$\exists w_{1} \forall w_{2} \ldots \exists V \varphi(\mathrm{~W}, \mathrm{~V}) \Leftrightarrow x \in L$
May 11,2023
CS151 Lecture 12
${ }_{3} 34$
34

QSAT is PSPACE-complete

35

QSAT is PSPACE-complete

$\operatorname{REACH}(\mathrm{X}, \mathrm{Y}, \mathrm{i}) \Leftrightarrow$ configuration Y reachable from configuration X in at most 2 i steps.

- Goal: produce 3-CNF $\varphi\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)$ such that
$\exists w_{1} \forall w_{2} \ldots Q w_{m} \varphi\left(w_{1}, \ldots, w_{m}\right)$ REACH(START, ACCEPT, n^{k})

$$
\begin{array}{ll}
\text { May 11, 2023 } & \text { CS151 Lecture } 12
\end{array}
$$

${ }^{33}$

QSAT is PSPACE-complete

- Key observation \#1:
$\operatorname{REACH}(A, B, i+1)$
\Leftrightarrow
$\exists[\operatorname{REACH}(A, Z, i) \wedge \operatorname{REACH}(Z, B, i)]$
- cannot define $\psi_{i+1}(A, B)$ to be
(why?)
CS151 Lecture 12
36

QSAT is PSPACE-complete

- Key idea \#2: use quantifiers
- couldn't do $\Psi_{i+1}(A, B)=\exists Z\left[\psi_{i}(A, Z) \wedge \psi_{i}(Z, B)\right]$
- define $\psi_{i+1}(A, B)$ to be
$\exists Z \forall X \forall Y\left[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow \Psi_{i}(X, Y)\right]$
$-\Psi_{i}(X, Y)$ is preceded by quantifiers
- move to front (they don't involve $X, Y, Z, A, B)$

May 11,2023
CS151 Lecture 12
37

QSAT is PSPACE-complete

$\psi_{o}(A, B)=$ true iff $A=B$ or A yields B in 1 step $\Psi_{i+1}(A, B)=$
$\exists Z \forall X \forall Y\left[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow \psi_{i}(X, Y)\right]$
$-\left|\psi_{0}\right|=O\left(n^{k}\right)$
$-\left|\psi_{i+1}\right|=O\left(n^{k}\right)+\left|\psi_{i}\right|$

- total size of $\psi_{n^{k}}$ is $O\left(n^{k}\right)^{2}=$ poly (n)
- logspace reduction

May 11, 2023
CS151 Lecture 12
${ }^{38}$
38

39

40

Natural complete problems

- We now have versions of SAT complete for levels in PH, PSPACE
- Natural complete problems?
- PSPACE: games
- PH: almost all natural problems lie in the second and third level

May 11, 2023
CS151 Lecture 12 ${ }^{41}$

41

Natural complete problems in PH

- MIN CIRCUIT
- good candidate to be Σ_{2}-complete, still open
- MIN DNF: given DNF φ, integer k; is there a DNF φ^{\prime} of size at most k computing same function φ does?

Theorem (U): MIN DNF is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete.

May 11, 2023

CS151 Lecture 12

Natural complete problems in

PSPACE

- General phenomenon: many 2-player games are PSPACE-complete.
- 2 players I, II
- alternate pick-
ing edges
san davis
- lose when no
- GEOGRAPHY $=\{(G, s): G$ is a directed graph and player I can win from node s\} May 11, 2023
cs151 Lecture 12
43

Natural complete problems in PSPACE

Theorem: GEOGRAPHY is PSPACEcomplete.

Proof

- in PSPACE

- easily expressed with alternating quantifiers
- PSPACE-hard
- reduction from QSAT

May 11, 2023
CS151 Lecture 12
${ }^{44}$

44

45

[^0]: May 11, 2023

