

1

2

Encoding

- use a (variant of) Reed-Muller code concatenated with the Hadamard code
- q (field size), t (dimension), h (degree)
- encoding procedure:
- message $m \in\{0,1\}^{k}$
so, need $h^{t} \geq k$
- subset $S \subseteq F_{q}$ of size h
- efficient 1-1 function Emb: $[k] \rightarrow S^{t}$
- find coeffs of degree h polynomial $p_{m}: F_{q}{ }^{\dagger} \rightarrow F_{q}$ for which $p_{m}(E \mathrm{Emb}(\mathrm{i}))=\mathrm{m}_{\mathrm{i}}$ for all i (linear algebra)
May 9 , 2023
CS151 Lecture 11
3

Decoding

Enc(m): 0111100001000001
R: 0001101101000010

- small circuit C computing R , agreement $1 / 2+\delta$

- Decoding step 1

- produce circuit C' from C
- given $\mathbf{x} \in \mathrm{F}_{\mathrm{q}}{ }^{\mathrm{t}}$ outputs "guess" for $\mathrm{p}_{\mathrm{m}}(\mathbf{x})$
- C' computes $\{\mathrm{z}$: $\operatorname{Had}(\mathrm{z})$ has agreement $1 / 2+\delta / 2$ with x-th block\}, outputs random z in this set

May 9, 2023
CS151 Leeture 11

6
5

Decoding

- Decoding step 1 (continued):
- for at least $\delta / 2$ of blocks, agreement in block is at least $1 / 2+\delta / 2$
- Johnson Bound: when this happens, list size is $S=O\left(1 / \delta^{2}\right)$, so probability C^{\prime} correct is $1 / \mathrm{S}$
- altogether:
- $\operatorname{Pr}_{x}\left[C^{\prime}(x)=p_{m}(x)\right] \geq \Omega\left(\delta^{3}\right)$
- C' makes q queries to C
- C' runs in time poly(q)

May 9, 2023
CS151 Lecture 11

7

Decoding

$\mathrm{p}_{\mathrm{m}}:$| 5 | 2 | 7 | 1 | 2 | 9 | $0 \mid 3$ | $6\|8\|$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- small circuit C' computing R', agreement $\delta^{\prime}=\Omega\left(\delta^{3}\right)$
- Decoding step 2
- produce circuit C" from C'
- given $\mathbf{x} \in \operatorname{emb}(1,2, \ldots, k)$ outputs $p_{m}(\mathbf{x}$
- idea: restrict p_{m} to a random curve; apply efficient R-S list-decoding; fix "good" random choices

May 9,2023
CS151 Lecture 11
8

8

Decoding

\section*{$\mathrm{p}_{\mathrm{m}}:$| 5 | 2 | 7 | 1 | 2 | 9 | $0 \mid 3$ | $6\|8\|$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 }

- small circuit C^{\prime} computing R^{\prime}, agreement $\delta^{\prime}=\Omega\left(\delta^{3}\right)$
- Decoding step 2 (continued):
- pick random $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}} ; \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{r}}$ to determine curve L
- points on L are ($r-1$)-wise independent
- random variable: Agr $=\left|\left\{z: C^{\prime}(L(z))=p_{m}(L(z))\right\}\right|$
$-\mathrm{E}[\mathrm{Agr}]=\delta^{\prime} \mathrm{q}$ and $\operatorname{Pr}\left[\operatorname{Agr}<\left(\delta^{\prime} \mathrm{q}\right) / 2\right]<\mathrm{O}\left(1 /\left(\delta^{\prime} \mathrm{q}\right)\right)^{\left(r^{\prime}-1\right) / 2}$
May 9,2023
CS151 Lecture 11
11

10

Restricting to a curve

- points $\mathrm{x}=\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{r}} \in \mathrm{F}_{\mathrm{q}}{ }^{\mathrm{t}}$ specify a degree r curve $L: F_{q} \rightarrow F_{q}{ }^{\dagger}$ - $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}}$ are distinct
elements of F_{q}
- for each $\mathrm{i}, \mathrm{L}_{\mathrm{i}}: \mathrm{F}_{\mathrm{q}} \rightarrow \mathrm{F}_{\mathrm{q}}$
is the degree r poly for which
$\mathrm{L}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}}\right)=\left(\alpha_{\mathrm{j}}\right)_{\mathrm{i}}$ for all j
-Write $\mathrm{p}_{\mathrm{m}}(\mathrm{L}(\mathrm{z}))$ to mean
$p_{m}\left(L_{1}(z), L_{2}(z), \ldots, L_{t}(z)\right)$
- $p_{m}\left(\mathrm{~L}\left(\mathrm{w}_{\mathrm{i}}\right)\right)=\mathrm{p}_{\mathrm{m}}(\mathrm{x})$
may 9,2023
9

Decoding

$\mathrm{p}_{\mathrm{m}}:$| 5 | 2 | 7 | 1 | 2 | 9 | 0 | 3 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- small circuit C^{\prime} computing R^{\prime}, agreement $\delta^{\prime}=\Omega\left(\delta^{3}\right)$
- Decoding step 2 (continued):
- agr $=\left|\left\{z: C^{\prime}(L(z))=p_{m}(L(z))\right\}\right|$ is $\geq\left(\delta^{\prime} q\right) / 2$ with very high probability
- compute using Reed-Solomon list-decoding:
$\left\{q(z): \operatorname{deg}(q) \leq\right.$ rhht, $\left.\operatorname{Pr}_{2}\left[C^{\prime}(L(z))=q(z)\right] \geq\left(\delta^{\prime} q\right) / 2\right\}$
- if agr $\geq\left(\delta^{\prime} q\right) / 2$ then $p_{m}(L(\cdot))$ is in this set!

May 9, 2023
CS151 Lecture 11

Decoding		
- Decoding step 2 (continued): - assuming $\left(\delta^{\prime} q\right) / 2>(2 r \cdot h \cdot t \cdot q)^{1 / 2}$ - Reed-Solomon list-decoding step: - running time = poly(q) - list size $\mathrm{S} \leq 4 / \delta^{\prime}$		
- probability list fails to contain $\mathrm{p}_{\mathrm{m}}(\mathrm{L}(\cdot))$ is $O(1 /(\delta q))^{(r-1) / 2}$		
May 9, 2023	CS151 Lecture 11	${ }^{13}$

13

Decoding

- Decoding step 2 (continued):
- Tricky:
- functions in list are determined by the set $\mathrm{L}(\cdot)$, independent of parameterization of the curve
- Regard $\mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{r}}$ as random points on curve L
- for $\mathrm{q} \neq \mathrm{p}_{\mathrm{m}}(\mathrm{L} \cdot \cdot)$)
$\operatorname{Pr}\left[q\left(w_{i}\right)=p_{m}\left(L\left(w_{i}\right)\right)\right] \leq(r h t) / q$
$\operatorname{Pr}\left[\forall \mathrm{i}, \mathrm{q}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{m}}\left(\mathrm{L}\left(\mathrm{w}_{\mathrm{i}}\right)\right)\right] \leq[(r h t) / \mathrm{q}]^{r-1}$
$\operatorname{Pr}\left[\exists \mathrm{q}\right.$ in list s.t. $\forall \mathrm{i} q\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{m}}\left(\mathrm{L}\left(\mathrm{w}_{\mathrm{i}}\right)\right] \leq\left(4 / \delta^{\prime}\right)[(\mathrm{rrt}) / \mathrm{q}]^{[-1}$ May 9,2023 CS151 Lecture 11 14

14

Decoding

- Decoding step 2 (continued):
- with probability $\geq 1-\mathrm{O}(1 /(\delta q))^{(r-1) / 2}-\left(4 / \delta^{\prime}\right)[(r h t) / \mathrm{ql}]^{-1}$ - list contains $q^{*}=p_{m}(L(\cdot))$
- q^{*} is the unique q in the list for which $q\left(w_{i}\right)=p_{m}\left(L\left(w_{i}\right)\right)\left(=p_{m}\left(\alpha_{i}\right)\right)$ for $i=2,3, \ldots, r$ - circuit C"
- hardwire $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}} ; \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{r}}$ SO that $\forall x \in \operatorname{emb}(1,2, \ldots, \mathrm{k})$ both events occur
- hardwire $\mathrm{p}_{\mathrm{m}}\left(\alpha_{\mathrm{i}}\right)$ for $\mathrm{i}=2, \ldots \mathrm{r}$
- on input x , find q^{*}, output $\mathrm{q}^{*}\left(\mathrm{w}_{1}\right)\left(=\mathrm{p}_{\mathrm{m}}(\mathrm{x})\right.$)

May 9,2023
CS151 Lecture 11
15

Decoding

- Putting it all together:
- C approximating f' used to construct C'
- C' makes q queries to C
- C' runs in time poly(q)
$-C^{\prime}$ used to construct $C^{\prime \prime}$ computing f exactly
- C" makes q queries to C
- C" has r-1 elts of $\mathrm{F}_{\mathrm{q}}{ }^{\mathrm{t}}$ and $2 \mathrm{r}-1$ elts of F_{q} hardwired
- C" runs in time poly(q)
- C" has size poly (q, r, t, size of C)

May 9, 2023
CS151 Lecture 11
16

Picking parameters

- k truth table size of f, hard for circuits of size s - \underline{g} field size, $\underline{h} R-M$ degree, $\underline{t} R-M$ dimension - r degree of curve used in decoding
$-h^{t} \geq k$ (to accomodate message of length k)
$-\delta^{6} q^{2}>\Omega(\mathrm{rhtq}) \quad$ (for R-S list-decoding)
$-k\left[O(1 /(\delta q))^{(r-1) / 2}+\left(4 / \delta^{\prime}\right)[(r h t) / q]^{r-1}\right]<1$
(so there is a "good" fixing of random bits)
- Pick: $\mathrm{h}=\mathrm{s}, \mathrm{t}=(\log \mathrm{k}) /(\log \mathrm{s})$
- Pick: $r=\Theta(\log k), q=\Theta\left(r h t \delta^{-6}\right)$

May 9, 2023
CS151 Lecture 11
17

Picking parameters

- k truth table size of f, hard for circuits of size s
- q field size, h R-M degree, t R-M dimension
- r degree of curve used in decoding
- $h=s, t=(\log k) /(\log s)$
- $r=\Theta(\log k), q=\Theta\left(r h t \delta^{-6}\right)$

Claim: truth table of f^{\prime} computable in time poly (k) (so $f^{\prime} \in E$ if $f \in E$).

- poly(q(q) for R-M encoding
- poly(q).q for Hadamard encoding
$-\mathrm{q} \leq \operatorname{poly}(\mathrm{s})$, so $\mathrm{q}^{\mathrm{t}} \leq \operatorname{poly}(\mathrm{s})^{\mathrm{t}}=\operatorname{poly}(\mathrm{h})^{\mathrm{t}}=\operatorname{poly}(\mathrm{k})$
May 9,2023
CS151 Lecture 11
18

Picking parameters

- k truth table size of f, hard for circuits of size s
- q field size, h R-M degree, $\mathrm{t} \mathrm{R-M} \mathrm{dimension}$
- r degree of curve used in decoding
- $\mathrm{h}=\mathrm{s}, \mathrm{t}=(\log \mathrm{k}) /(\log \mathrm{s})$
- $r=\Theta(\log k), q=\Theta\left(r h t \delta^{-6}\right)$

Claim: f' s'-approximable by C implies f
computable exactly in size s by $C^{\prime \prime}$, for $s^{\prime}=s^{\Omega(1)}$
-C has size s^{\prime} and agreement $\delta=1 / \mathrm{s}^{\prime}$ with f^{\prime}
$-C^{\prime \prime}$ has size poly(q, r, t, size of $\left.C\right)=s$
May 9,2023
CS151 Lecture 11
19

19

Putting it all together

Theorem 1 (IW, STV): If E contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$-unapproximable functions. (proof on next slide)
Theorem (NW): if E contains $2^{\Omega(n)}$-unapproximable functions then BPP = \mathbf{P}.
Theorem (IW): E requires exponential size circuits $\Rightarrow B P P=P$.

May 9, 2023
CS151 Lecture 11 ${ }^{20}$

20

Putting it all together

- Proof of Theorem 1:
- let $f=\left\{f_{n}\right\}$ be hard for size $s(n)=2^{\text {万n }}$ circuits
- define $f^{\prime}=\left\{f_{n}{ }^{\prime}\right\}$ to be just-described encoding of (the truth tables of) $\mathrm{f}=\left\{\mathrm{f}_{n}\right\}$
- two claims we just showed:
- f^{\prime} is in E since f is.
- if f^{\prime} is $s^{\prime}(n)=2^{\sigma^{\theta^{\prime}}-\text { approximable, then } f \text { is }}$
computable exactly by size $s(n)=2^{\text {®n }}$ circuits.
- contradiction.

May 9, 2023
CS151 Lecture 11
${ }^{21}$
21

Extractors

- PRGs: can remove randomness from algorithms
- based on unproven assumption
- polynomial slow-down
- not applicable in other settings
- Question: can we use "real" randomness?
- physical source
-imperfect - biased, correlated
May 9, 2023
CS151 Lecture 11
22

Extractors

- "Hardware" side
- what physical source?
- ask the physicists...
- "Software" side
- what is the minimum we need from the physical source?

May 9,2023
CS151 Lecture 11 ${ }^{23}$

23

Extractors

- imperfect sources:
- "stuck bits":
- "correlation":
- "more insidious correlation"

perfect squares

- there are specific ways to get independent unbiased random bits from specific imperfect physical sources

May 9,2023
CS151 Leeture 11
${ }^{24}$
24

Extractors

- want to assume we don't know details of physical source
- general model capturing all of these? - yes: "min-entropy"
- universal procedure for all imperfect sources?
- yes: "extractors"

May 9 , 2023
CS151 Lecture 11

Min-entropy

- General model of physical source w/k < n bits of hidden randomness
string sampled uniformly from this set

Definition: random variable X on $\{0,1\}^{\text {n }}$ has min-entropy $\min _{x}-\log (\operatorname{Pr}[X=x])$

- min-entropy kimplies no string has weight more than 2^{-k}
May 9,2023
CS151 Lecture 11
${ }^{26}$
26

Extractor

- Extractor: universal procedure for "purifying" imperfect source:

$-E$ is efficiently computable
- truly random seed as "catalyst"
May 9,2023
CS151 Lecture 11

28

Extractors

- Using extractors
- use output in place of randomness in any application
- alters probability of any outcome by at most ε
- Main motivating application:
- use output in place of randomness in algorithm
- how to get truly random seed?
- enumerate all seeds, take majority

May 9,2023
CS151 Lecture 11 ${ }^{29}$

Extractors

- Goals: short seed long output many k's $\log \mathrm{n}+\mathrm{O}(1)$ $\mathrm{m}=\mathrm{k}+\mathrm{t}-\mathrm{O}(1)$

$$
\mathrm{k}=\mathrm{n}^{\Omega(1)}
$$ any $k=k(n)$

May 9, 2023
CS151 Lecture 11
${ }^{30}$
30

Extractors

- random function for E achieves best !
- but we need explicit constructions
- many known; often complex + technical
- optimal extractors still open
- Trevisan Extractor:
- insight: use NW generator with source string in place of hard function
- this works (!!)
- proof slightly different than NW, easier

May 9,2023
CS151 Lecture 11
${ }^{31}$

Trevisan Extractor

- Ingredients:
($\delta>0, \mathrm{~m}$ are parameters)
- error-correcting code
$C:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
distance $\left(1 / 2-1 / 4 m^{-4}\right) n^{\prime}$ blocklength $n^{\prime}=\operatorname{poly}(n)$
- $\left(\log n^{\prime}, a=\delta \log n / 3\right)$ design:
$S_{1}, S_{2}, \ldots, S_{m} \in\left\{1 \ldots t=O\left(\log n^{\prime}\right)\right\}$
$E(x, y)=C(x)\left[y_{\mid S_{1}}\right] \circ C(x)\left[y_{\mid S_{2}}\right] \circ \ldots \circ C(x)\left[y_{\mid S_{m}}\right]$

May 9,2023
CS151 Lecture 11
${ }_{3} 2$
32

Trevisan Extractor		
- Proof: - given $X \subseteq\{0,1\}^{\mathrm{n}}$ of size 2^{k}		
- assume E fails to ε-pass statistical test C$\mid \operatorname{Pr}_{z}[C(z)=1]-\operatorname{Pr}_{x-x, y}[[C(E(x, y))=1] \mid>\varepsilon$		
- distinguisher $C \Rightarrow$ predictor P :$\operatorname{Pr}_{x-x, y}\left[P\left(E(x, y)_{1 \ldots j-1}\right)=E(x, y)\right]>1 / 2+\varepsilon / m$		
May 9, 2023	CS151 Lecture 11	${ }^{34}$

34

33

Trevisan Extractor

$E(x, y)=C(x)\left[y_{\mid S_{1}}\right] \circ C(x)\left[y_{\mid S_{2}}\right] \circ \ldots \circ C(x)\left[y_{\mid S_{m}}\right]$
$C(x): 010100101111101010111001010$
seed y

Theorem (T): E is an extractor for min-entropy $\mathrm{k}=\mathrm{n}^{\delta}$, with

- output length $m=k^{1 / 3}$
- seed length $t=O(\log n)$
- error $\varepsilon \leq 1 / m$

May 9, 2023
CS151 Lecture 11

Trevisan Extractor

- Proof (continued):
- for at least $\varepsilon / 2$ of $x \in X$ we have: $\operatorname{Pr}_{y}\left[P\left(E(x, y)_{1 \ldots i-1}\right)=E(x, y)_{i}\right]>1 / 2+\varepsilon /(2 m)$
- fix bits α, β outside of S_{i} to preserve advantage $\operatorname{Pr}_{y^{\prime}}\left[\mathrm{P}\left(\mathrm{E}\left(\mathrm{x} ; \alpha \mathrm{y}^{\prime} \beta\right)_{1 \ldots \mathrm{i}-1}\right)=\mathrm{C}(\mathrm{x})\left[\mathrm{y}^{\prime}\right]\right]>1 / 2+\varepsilon /(2 \mathrm{~m})$
- as vary y^{\prime}, for $\mathrm{j} \neq \mathrm{i}, \mathrm{j}$-th bit of $\mathrm{E}\left(\mathrm{x} ; \alpha \mathrm{y}^{\prime} \beta\right)$ varies over only $2^{\text {a }}$ values
$-(m-1)$ tables of $2^{\text {a }}$ values supply $\mathrm{E}\left(x ; \alpha y^{\prime} \beta\right)_{1 \ldots \mathrm{i}-1}$
May 9, 2023
CS151 Lecture 11
${ }^{35}$
35

Trevisan Extractor		
- Proof (continued):		
- for at least $\varepsilon / 2$ of $x \in X$ we have:		
$\operatorname{Pr}_{y}\left[P\left(E(x, y)_{1} \ldots i_{-1}\right)=E(x, y)_{i}\right]>1 / 2+\varepsilon /(2 m)$		
- fix bits α, β outside of S_{i} to preserve advantage$\operatorname{Pr}_{y}\left[\mathrm{P}\left(\mathrm{E}\left(\mathrm{x} ; \alpha \mathrm{y}^{\prime} \beta\right)_{1 \ldots i-1}\right)=\mathrm{C}(\mathrm{x})\left[y^{\prime}\right]\right]>1 / 2+\varepsilon /(2 \mathrm{~m})$		
- as vary y^{\prime}, for $\mathrm{j} \neq \mathrm{i}$, j -th bit of $\mathrm{E}\left(\mathrm{x} ; \alpha \mathrm{y}^{\prime} \beta\right)$ varies over only $2^{\text {a }}$ values		
- (m-1) tables of $2^{\text {a }}$ values supply $\mathrm{E}\left(\mathrm{x} ; \alpha \mathrm{y}^{\prime} \beta\right)_{1} \ldots \mathrm{i}-1$		
May 9, 2023	CS151 Lecture 11	35

Trevisan Extractor

May 9,2023
CS151 Lecture 11
${ }^{36}$
36

Trevisan Extractor

- Proof (continued):
- (m-1) tables of size 2^{a} constitute a description of a string that has $1 / 2+\varepsilon /(2 m)$ agreement with $\mathrm{C}(\mathrm{x})$
$-\#$ of strings x with such a description?
- $\exp \left((m-1) 2^{a}\right)=\exp \left(n^{\delta 2 / 3}\right)=\exp \left(k^{2 / 3}\right)$ strings
- Johnson Bound: each string accounts for at most $\mathrm{O}\left(\mathrm{m}^{4}\right)$ x's
- total \#: O($\left.\mathrm{m}^{4}\right) \exp \left(\mathrm{k}^{2 / 3}\right) \ll 2^{\mathrm{k}}(\varepsilon / 2)$ - contradiction

мay 9, 2023
CS151 Lecture 11

$-E$ is efficiently computable
$-\forall X$ with minentropy k, E fools all circuits C : $\left|\operatorname{Pr}_{z}[C(z)=1]-\operatorname{Pr}_{y, x-x}[C(E(x, y))=1]\right| \leq \varepsilon$

May 9,2023
CS151 Lecture 11
${ }^{38}$

Strong error reduction

- $L \in B P P$ if there is a p.p.t. TM M: $x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 2 / 3$ $x \forall L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$
- Want: poly(|y|)
$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 1-2-k$ bit
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 1-2^{-k}$
- We saw: repeat $O(k)$ times
$-\mathrm{n}=\mathrm{O}(\mathrm{k}) \cdot|\mathrm{y}|$ random bits; $2^{\mathrm{n}-\mathrm{k}}$ bad strings
May 9 , 2023 CS151 Lecture 11

39

Strong error reduction

- Better:
- E extractor for minentropy $k=|y|^{3}=n^{\bar{\delta}}, \quad \varepsilon<1 / 6$
- pick random $w \in\{0,1\}^{n}$, run $M(x, E(w, z))$ for all $z \in\{0,1\}^{\text {t, }}$, take majority
- call w "bad" if $\operatorname{maj}_{z} M(x, E(w, z))$ incorrect $\left|\operatorname{Pr}_{z}[M(x, E(w, z))=b]-\operatorname{Pr}_{y}[M(x, y)=b]\right| \geq 1 / 6$
- extractor property: at most 2^{k} bad w
-n random bits; $2^{n^{\delta}}$ bad strings
May 9,2023
CS151 Lecture 11
40

